References |
Mullins, W.W., Sekerka, R.F., Stability of a planar interface during solidification of a dilute binary alloy (1964) J. Appl. Phys., 35 (2), pp. 444-451; Kurz, W., Fisher, D.J., (1992) Fundamentals of Solidification, , third ed. Trans Tech Aedermannsdorf; Müller-Krumbhaar, H., Kurz, W., Brener, E., (2001) Phase Transformations in Materials, p. 81. , G. Kostorz, Wiley-VCH Weinheim; Dantzig, J.A., Rappaz, M., (2009) Solidification, , EFPL Press Lausanne; Ivantsov, G.P., Temperature field around spherical, cylinder and needle-like dendrite growing in supercooled melt (1947) Dokl. Akad. Nauk SSSR, 58 (4), pp. 567-569; Ivantsov, G.P., On a growth of spherical and needle-like crystals of a binary alloy (1952) Dokl. Akad. Nauk SSSR, 83 (4), pp. 573-575; Temkin, D.E., On the growth of needle-like dendrite (1960) Dokl. Akad. Nauk SSSR, 132, pp. 1307-1310; Horvay, G., Cahn, J., Dendritic and spheroidal growth (1961) Acta Metall., 9 (7), pp. 695-705; Ivantsov, G.P., Thermal and diffusional processes during crystal growth (1961) Growth of Crystals, 3, pp. 75-84. , A.V. Shubnikov, N.N. Sheftal, Akademia Nauk Moscow; Pelce, P., Bensimon, D., Theory of dendrite dynamics (1987) Nucl. Phys. B Proc.Suppl., 2, pp. 259-270; Pelcé, P., (1988) Dynamics of Curved Fronts, , Academic Press; Brener, E.A., Mel'Nikov, V.I., Pattern selection in two-dimensional dendritic growth (1991) Adv. Phys., 40 (1), pp. 53-97; Alexandrov, D.V., Galenko, P.K., Selection criterion of stable dendritic growth at arbitrary Péclet numbers with convection (2013) Phys. Rev. e, 87. , 062403-1-5; Glicksman, M.E., Koss, M.B., Winsa, E.A., Dendritic growth velocities in microgravity (1994) Phys. Rev. Lett., 73 (4), pp. 573-576; Gao, J., Han, M., Kao, A., Pericleous, K., Alexandrov, D.V., Galenko, P.K., Dendritic growth velocities in an undercooled melt of pure nickel under static magnetic fields: A test of theory with convection (2016) Acta Mater., 103, pp. 184-191; Tong, X., Beckermann, C., Karma, A., Li, Q., Phase-field simulations of dendritic crystal growth in a forced flow (2001) Phys. Rev. e, 63 (6), p. 061601; Jeong, J.-H., Goldenfeld, N., Dantzig, J.A., Phase field model for three-dimensional dendritic growth with fluid flow (2001) Phys. Rev. e, 64 (4), p. 041602; Herlach, D., Galenko, P., Holland-Moritz, D., (2007) Metastable Solids from Undercooled Melts, , Elsevier Amsterdam; Aryanfar, A., Brooks, D.J., Colussi, A.J., Merinov, B.V., Goddard, W.A., Hoffmann, M.R., Thermal relaxation of lithium dendrites (2015) Phys. Chem. Chem. Phys., 17 (12), pp. 8000-8005; Bieker, G., Winter, M., Bieker, P., Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode (2015) Phys. Chem. Chem. Phys., 17 (14), pp. 8670-8679; Xiao, J.P., Xie, Y., Tang, R., Chen, M., Tian, X.B., Novel ultrasonically assisted templated synthesis of palladium and silver dendritic nanostructures (2001) Adv. Mater., 13 (24), pp. 1887-1891; Xiao, J., Xie, Y., Tang, R., Luo, W., Template-based synthesis of nanoscale Ag2E (E = S, Se) dendrites (2002) J. Mater. Chem., 12 (4), pp. 1148-1151; Kuang, D., Xu, A., Fang, Y., Liu, H., Frommen, C., Fenske, D., Surfactant-Assisted growth of novel PbS dendritic nanostructures via facile hydrothermal process (2003) Adv. Mater., 15 (20), pp. 1747-1750; Zhang, Q., Liu, S.-J., Yu, S.-H., Recent advances in oriented attachment growth and synthesis of functional materials: Concept, evidence, mechanism, and future (2009) J. Mater. Chem., 19 (2), pp. 191-207; Shi, L., Wang, A., Zhang, T., Zhang, B., Su, D., Li, H., Song, Y., One-Step synthesis of Au-Pd alloy nanodendrites and their catalytic activity (2013) J. Phys. Chem. C, 117 (24), pp. 12526-12536; Qin, Y., Song, Y., Sun, N., Zhao, N., Li, M., Qi, L., Ionic liquid-assisted growth of single-crystalline dendritic gold nanostructures with a three-fold symmetry (2008) Chem. Mater., 20 (12), pp. 3965-3972; Wen, X., Xie, Y.-T., Mak, W.C., Cheung, K.Y., Li, X.-Y., Renneberg, R., Yang, S., Dendritic nanostructures of silver: Facile synthesis, structural characterizations, and sensing applications (2006) Langmuir, 22 (10), pp. 4836-4842; Zhang, Q., Yao, W.-T., Chen, X., Zhu, L., Fu, Y., Zhang, G., Sheng, L., Yu, S.-H., Nearly monodisperse tungstate MWO4 microspheres (M = Pb, Ca): Surfactant-assisted solution synthesis and optical properties (2007) Cryst. Growth Des., 7 (8), pp. 1423-1431; Cheng, Y., Wang, Y., Chen, D., Bao, F., Evolution of single crystalline dendrites from nanoparticles through oriented attachment (2005) J. Phys. Chem. B, 109 (2), pp. 794-798; Willnecker, R., Herlach, D.M., Feuerbacher, B., Grain refinement induced by a critical crystal growth velocity in undercooled melts (1990) Appl. Phys. Lett., 56 (4), pp. 324-326; Eckler, K., Cochrane, R.F., Herlach, D.M., Feuerbacher, B., Jurisch, M., Evidence for a transition from diffusion-controlled to thermally controlled solidification in metallic alloys (1992) Phys. Rev. B, 45 (9), pp. 5019-5022; Herlach, D., Non-equilibrium solidification of undercooled metallic metls (1994) Mater. Sci. Eng. R: Rep., 12 (4-5), pp. 177-272; Galenko, P.K., Danilov, D.A., Local nonequilibrium effect on rapid dendritic growth in a binary alloy melt (1997) Phys. Lett. A, 235 (3), pp. 271-280; Galenko, P.K., Danilov, D.A., Model for free dendritic alloy growth under interfacial and bulk phase nonequilibrium conditions (1999) J. Cryst. Growth, 197 (4), pp. 992-1002; Yang, Y., Humadi, H., Buta, D., Laird, B.B., Sun, D., Hoyt, J.J., Asta, M., Atomistic simulations of nonequilibrium crystal-growth kinetics from alloy melts (2011) Phys. Rev. Lett., 107 (2). , 025505-1-4; Jou, D., Galenko, P.K., Coarse graining for the phase-field model of fast phase transitions (2013) Phys. Rev. e, 88 (4), p. 042151; Barbieri, A., Langer, J.S., Predictions of dendritic growth rates in the linearized solvability theory (1989) Phys. Rev. A, 39 (10), pp. 5314-5325; Ben Amar, M., Theory of needle-crystal (1988) Physica D, 31 (3), pp. 409-423; Brener, E., Melnikov, V.I., Velocity selection and instability spectrum in 3d dendritic growth (1995) JETP, 80, pp. 341-345; Galenko, P., Extended thermodynamical analysis of a motion of the solid-liquid interface in a rapidly solidifying alloy (2002) Phys. Rev. B, 65 (14), p. 144103; Galenko, P., Solute trapping and diffusionless solidification in a binary system (2007) Phys. Rev. e, 76 (3), p. 031606; Kessler, D.A., Koplik, J., Levine, H., Pattern selection in fingered growth phenomena (1988) Adv. Phys., 37 (3), pp. 255-339; Langer, J.S., Hong, D.C., Solvability conditions for dendritic growth in the boundary-layer model with capillary anisotropy (1986) Phys. Rev. A, 34 (2), pp. 1462-1471; Ben Amar, M., Pelcé, P., Impurity effect on dendritic growth (1989) Phys. Rev. A, 39 (8), pp. 4263-4269; Alexandrov, D.V., Galenko, P.K., Thermo-solutal and kinetic regimes of an anisotropic dendrite growing under forced convective flow (2015) Phys. Chem. Chem. Phys., 17 (29), pp. 19149-19161; Alexandrov, D.V., Galenko, P.K., Dendrite growth under forced convection: Analysis methods and experimental tests (2014) Phys.-Usp., 57, pp. 771-786; Galenko, P.K., Danilov, D.A., Steady-state shapes of growing crystals in the field of local nonequilibrium diffusion (2000) Phys. Lett. A, 272 (3), pp. 207-217; Galenko, P.K., Danilov, D.A., Alexandrov, D.V., Solute redistribution around crystal shapes growing under hyperbolic mass transport (2015) Int. J. Heat Mass Transfer, 89, pp. 1054-1060; Collins, J.B., Levine, H., Diffuse interface model of diffusion-limited crystal growth (1985) Phys. Rev. B, 31, pp. 6119-6122; Sekerka, R.F., (2001) Advances in Crystal Growth Research, , Elsevier Amsterdam p. 21; Echebarria, B., Folch, R., Karma, A., Plapp, M., Quantitative phase-field model of alloy solidification (2004) Phys. Rev. e, 70 (6), p. 061604; Fröman, N., Fröman, P.O.J., Approximation, W.K.B., (1965) Contributions to the Theory, , North-Holland Amsterdam; Zel'Dovich, A.B., Istratov, A.G., Kidin, N.I., Librovich, V.B., Flame propagation in tubes: Hydrodynamics and stability (1980) Combust. Sci. Technol., 24 (1-2), pp. 1-13; Caroli, B., Caroli, C., Roulet, B., Langer, J.S., Solvability condition for needle crystals at large undercooling in a nonlocal model of solidification (1986) Phys. Rev. A, 33 (1), pp. 442-452; Bouissou, P., Pelcé, P., Effect of a forced flow on dendritic growth (1989) Phys. Rev. A, 40, pp. 6673-6680; Hartmann, H., Galenko, P.K., Holland-Moritz, D., Kolbe, M., Herlach, D.M., Shuleshova, O., Nonequilibrium solidification in undercooled Ti45Al55 melts (2008) J. Appl. Phys., 103 (7), p. 073509; Galenko, P.K., Reutzel, S., Herlach, D.M., Fries, S.G., Steinbach, I., Apel, M., Dendritic solidification in undercooled Ni-Zr-Al melts: Experiments and modeling (2009) Acta Mater., 57 (20), pp. 6166-6175; Galenko, P.K., Danilov, D.A., Linear morphological stability analysis of the solid-liquid interface in rapid solidification of a binary system (2004) Phys. Rev. e, 69 (5), p. 051608; Eckler, K., Herlach, D.M., Aziz, M.J., Search for a solute-drag effect in dendritic solidification (1994) Acta Metall. Mater., 42 (3), pp. 975-979; Langer, J., Müller-Krumbhaar, H., Theory of dendritic growth-I. Elements of a stability analysis (1978) Acta Metall., 26 (11), pp. 1681-1687; Langer, J.S., Instabilities and pattern formation in crystal growth (1980) Rev. Mod. Phys., 52 (1), pp. 1-28; Trivedi, R., Kurz, W., Dendritic growth (1994) Int. Mater. Rev., 39 (2), pp. 49-74; Kantorovich, L., Akilov, G., (1964) Functional Analysis in Normed Spaces, , Macmillan New York; Rudin, W., (1973) Functional Analysis, , McGraw Hill New York; Tanveer, S., Analytic theory for the selection of a two-dimensional needle crystal at arbitrary Péclet number (1989) Phys. Rev. A, 40 (8), pp. 4756-4769; Kruskal, M.D., Segur, H., Asymptotics beyond all orders in a model of crystal growth (1991) Stud. Appl. Math., 85 (2), pp. 129-181 |