Homogeneity range, oxygen nonstoichiometry, thermal expansion and transport properties of La2-: XSrxNi1- yFeyO4+ δ / Gilev A.R., Kiselev E.A., Cherepanov V.A. // RSC Advances. - 2016. - V. 6, l. 77. - P. 72905-72917.

ISSN:
20462069
Type:
Article
Abstract:
A series of La2-xSrxNi1-yFeyO4+δ complex oxides adopting the K2NiF4-type structure (sp.gr. I4/mmm) was prepared via the decomposition of citrate-nitrate precursors, followed by multiple annealing treatments at 1100 °C in air. Strontium for lanthanum substitution in La2-xSrxNi1-yFeyO4+δ leads to a progressive increase of iron solubility (y) which reaches maximum values at x = 1.0-1.2. The crystal structure of single-phase samples was refined by the Reitveld method. The unit cell volume increases with y and decreases with x in La2-xSrxNi1-yFeyO4+δ. The solid solutions of La2-xSrxNi1-yFeyO4+δ were shown by TGA to be over-stoichiometric (δ > 0) at x = 0.5 and 0.6 and oxygen deficient (δ < 0) at x = 0.8 within the temperature range of 25-1050 °C in air. The thermal expansion coefficient of La2-xSrxNi1-yFeyO4+δ increases with x and y, varying within the range of (12-16) × 10-6 K-1 up to 700 °C in air. In the higher temperature range, the value of the TEC increases up to 20 × 10-6 K-1 due to a chemical expansion contribution. The total conductivity and Seebeck coefficient were measured in air from RT to 1100 °C. The maximum conductivity value equal to 289 S cm-1 was obtained for La1.2Sr0.8Ni0.9Fe0.1O4+δ at 460 °C in air. The conduction is temperature activated for all samples within the composition range under study. The temperature dependencies of the Seebeck coefficient were explained in the approximation of the small-polaron hopping mechanism. The charge carriers were electron holes localized on nickel forming Ni3+ cations in low- and high-spin states. © 2016 The Royal Society of Chemistry.
Author keywords:
Index keywords:
Crystal structure; Iron compounds; Nickel; Seebeck coefficient; Thermal expansion; Thermoelectricity; Annealing treatments; Lanthanum substitution; Nitrate precursor (Np); Oxygen non-stoichiometry; Si
DOI:
10.1039/c6ra13335e
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84981333787&doi=10.1039%2fc6ra13335e&partnerID=40&md5=162e807b381e84ad7803856da37319d1
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84981333787&doi=10.1039%2fc6ra13335e&partnerID=40&md5=162e807b381e84ad7803856da37319d1
Affiliations Department of Chemistry, Institute of Natural Sciences, Ural Federal University, Ekaterinburg, Russian Federation
Funding Details 16-33-00562, RFBR, Russian Foundation for Basic Research
Funding Text This work was financially supported by RFBR (project No 16-33-00562).
References Mauvy, F., Lalanne, C., Bassat, J.M., Grenier, J.C., Zhao, H., Dordor, P., Stevens, P.H., (2005) J. Eur. Ceram. Soc., 25, p. 2669; Smith, J.B., Norby, T., (2006) J. Electrochem. Soc., 153, p. A233; Ishihara, T., Miyoshi, S., Furuno, T., Sanguanruang, O., Matsumoto, H., (2006) Solid State Ionics, 177, p. 3087; Liu, B.S., Liu, L., Au, C.T., Cheung, A.S.C., (2006) Catal. Lett., 108, p. 37; Minervini, L., Grimes, R.W., Kilner, J.A., Sickafus, K.E., (2000) J. Mater. Chem., 10, p. 2349; Klande, T., Efimov, K., Cusenza, S., Becker, K.-D., Feldhoff, A., (2011) J. Solid State Chem., 184, p. 3310; Skinner, J., (2003) Solid State Sci., 5, p. 419; Paulus, W., Cousson, A., Heger, G., Revcolevschi, A., Dhalenn, G., Hosoya, S., (1997) Phys. B, 234-236, p. 20; Jorgensen, J.D., Dabrowski, B., Richards, D.R., Pei, S., Hinks, D.G., (1989) Phys. Rev., 40, p. 2187; Benloucif, R., Nguyen, N., Greneche, J.M., Raveiau, B., (1991) J. Phys. Chem. Solids, 52, p. 381; Takeda, Y., Kanno, R., Sakano, M., Yamamoto, O., (1990) Mater. Res. Bull., 25, p. 293; Nakamura, T., Yashiro, K., Sato, K., Mizusaki, J., (2009) Solid State Ionics, 180, p. 368; Kim, H.-S., Yoo, H.-I., (2013) Solid State Ionics, 232, p. 129; Makhnach, L.V., Pankov, V.V., Strobel, P., (2008) Mater. Chem. Phys., 111, p. 125; Aguadero, A., Escudero, M.J., Pérez, M., Alonso, J.A., Pomjakushinc, V., Daza, L., (2006) Dalton Trans., p. 4377; Demazeau, G., Marty, J.L., Buffat, B., Dance, J.M., Pouchard, M., Dordor, P., Chevalier, B., (1982) Mater. Res. Bull., 17, p. 37; Takeda, Y., Imayoshi, K., Imanishi, N., Yamamoto, O., Takano, M., (1994) J. Mater. Chem., 4, p. 19; Gavrilova, L.Y., Aksenova, T.V., Cherepanov, V.A., (2008) Russ. J. Inorg. Chem., 53, p. 953; Jennings, A.J., Skinner, S.J., (2002) Solid State Ionics, 152-153, p. 663; Kharton, V.V., Viskup, A.P., Naumovich, E.N., Marques, F.M.B., (1999) J. Mater. Chem., 9, p. 2623; Yaremchenko, A.A., Kharton, V.V., Patrakeev, M.V., Frade, J.R., (2003) J. Mater. Chem., 13, p. 1136; Kiselev, E.A., Proskurnina, N.V., Voronin, V.I., Cherepanov, V.A., (2007) Inorg. Mater., 43, p. 209; Howlett, J.F., Flavell, W.R., Thomas, A.G., Hollingworth, J., Warren, S., Hashim, Z., Mian, M., Hancocke, F.E., (1996) Faraday Discuss., 105, p. 337; Rao, C.N.R., Ganguly, P., Singh, K.K., Ram, R.A.M., (1988) J. Solid State Chem., 72, p. 14; Flavell, W.R., Hollingworth, J., Howlett, J.F., Thomas, A.G., Sarker, M.M., Squire, S., Hashim, Z., Hancock, F.E., (1995) J. Synchrotron Radiat., 2, p. 264; Benloucif, R., Nguyen, N., Greneche, J.M., Raveau, B., (1989) J. Phys. Chem. Solids, 50, p. 435; Rodríguez-Carvajal, J., (1993) Phys. B, 192, p. 55; Gilev, A.R., Kiselev, E.A., Cherepanov, V.A., (2015) Solid State Ionics, 279, p. 53; Kharton, V.V., Viskup, A.P., Kovalevsky, A.V., Naumovich, E.N., Marques, F.M.B., (2001) Solid State Ionics, 143, p. 337; Kiselev, E.A., Proskurnina, N.V., Voronin, V.I., Cherepanov, V.A., (2007) Inorg. Mater., 43, p. 209; Tsipis, E.V., Kiselev, E.A., Kolotygin, V.A., Waerenborgh, J.C., Cherepanov, V.A., Kharton, V.V., (2008) Solid State Ionics, 179, p. 2170; Rodríguez-Carvajal, J., Fernández-Díaz, M.T., Martínez, J.L., (1991) J. Phys.: Condens. Matter, 3, p. 3215; Aguadero, A., Alonso, J.A., Martínez-Lope, M.J., Fernández-Díaz, M.T., Escudero, M.J., Daza, L., (2006) J. Mater. Chem., 16, p. 3402; Rice, D.E., Buttrey, D.J., (1993) J. Solid State Chem., 105, p. 197; Bobina, M.A., Yakovleva, N.A., Gavrilova, L.Y., Cherepanov, V.A., (2004) Russ. J. Phys. Chem. A, 78 (8), p. 1340; Shannon, R.T., Prewitt, C.T., (1976) Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr., 32, p. 751; Loup, J.P., Bassat, J.M., Couturier, G.S., Gervais, F., Odier, P., (1991) Phys. C, 185-189, p. 1005; Munnings, C.N., Skinner, S.J., Amow, G., Whitfield, P.S., Davidson, I.J., (2006) Solid State Ionics, 177, p. 1849; Tarôco, H.A., Santos, J.A.F., Domingues, R.Z., Matencio, T., (2011) Advances in Ceramics-Synthesis and Characterization, Processing and Specific Applications, , InTech, Shanghai; Mott, N.F., Davis, E.A., (1971) Electronic Processes in Non-Crystalline Materials, , Clarendon-Press, Oxford; Petrov, A.N., Cherepanov, V.A., Zuev, A.Y., (2006) J. Solid State Electrochem., 10, p. 517; Lago, J., Battle, P.D., Rosseinsky, M.J., (2003) J. Phys.: Condens. Matter, 15, p. 6817; Millburn, J.E., Rosseinsky, M.J., (1998) J. Mater. Chem., 8, p. 413
Correspondence Address Kiselev, E.A.; Department of Chemistry, Institute of Natural Sciences, Ural Federal UniversityRussian Federation; email: Eugene.Kiselyov@urfu.ru
Publisher Royal Society of Chemistry
CODEN RSCAC
Language of Original Document English
Abbreviated Source Title RSC Adv.
Source Scopus