On the contribution of the phagocytosis and the solubilization to the iron oxide nanoparticles retention in and elimination from lungs under long-term inhalation exposure / Sutunkova M.P., Katsnelson B.A., Privalova L.I., Gurvich V.B., Konysheva L.K., Shur V.Y., Shishkina E.V., Minigalieva I.A., Solovjeva S.N., Grebenkina S.V., Zubarev I.V. // Toxicology. - 2016. - V. 363-364, l. . - P. 19-28.

ISSN:
0300483X
Type:
Article
Abstract:
The aim of our study was to test a hypothesis according to which the pulmonary clearance vs. retention of metal oxide nanoparticles (NPs) is controlled not only by physiological mechanisms but also by their solubilization which in some cases may even prevail. Airborne Fe2O3 NPs with the mean diameter of 14 ± 4 nm produced by sparking from 99.99% pure iron rods were fed into a nose-only exposure tower. Rats were exposed to these NPs for 4 h a day, 5 days a week during 3, 6 or 10 months at the mean concentration of 1.14 ± 0.01 mg/m3. NPs collected from the air exhausted from the exposure tower proved insoluble in water but dissolved markedly in the cell free broncho-alveolar lavage fluid supernatant and in the sterile bovine blood serum. The Fe2O3 content of the lungs and lung-associated lymph nodes was measured by the Electron Paramagnetic Resonance (EPR) spectroscopy. We found a relatively low but significant pulmonary accumulation of Fe2O3, gradually increasing with time. Besides, we obtained TEM-images of nanoparticles within alveolocytes and the myelin sheaths of brain fibers associated with ultrastructural damage. We have developed a multicompartmental system model describing the toxicokinetics of inhaled nanoparticles after their deposition in the lower airways as a process controlled by their (a) high ability to penetrate through the alveolar membrane; (b) active endocytosis; (c) in vivo dissolution. To conclude, both experimental data and the identification of the system model confirmed our initial hypothesis and demonstrated that, as concerns iron oxide NPs of the dimensions used, the dissolution-depending mechanisms proved to be dominant. © 2016 Elsevier Ireland Ltd
Author keywords:
Iron oxide; Nanoparticles; Pulmonary toxicokinetics; System modeling
Index keywords:
нет данных
DOI:
10.1016/j.tox.2016.07.006
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84979656478&doi=10.1016%2fj.tox.2016.07.006&partnerID=40&md5=82081e9fb75500a80a1eca7b13cc9037
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84979656478&doi=10.1016%2fj.tox.2016.07.006&partnerID=40&md5=82081e9fb75500a80a1eca7b13cc9037
Affiliations The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers of the Rospotrebnadzor, Ekaterinburg, Russian Federation; The Ural Center for Shared Use “Modern Nanotechnology”, Ural Federal University, Ekaterinburg, Russian Federation
Author Keywords Iron oxide; Nanoparticles; Pulmonary toxicokinetics; System modeling
References Adamcakova-Dodd, A., Stebounova, L.V., Kim, J.S., Vorrink, S.U., Ault, A.P., O'shaughnessy, P.T., Grassian, V.H., Thorne, P.S., Toxicity assessment of zinc oxide nanoparticles using sub-acute and sub-chronic murine inhalation models (2014) Part. Fibre Toxicol., 11, p. 15; Bellmann, B., Creutzenberg, O., Dasenbrock, C., Lung clearance and retention of toner utilizing a tracer technique, during chronic inhalation exposure in rats (1991) Fundam. Appl. Toxicol., 17, pp. 300-313; Creutzenberg, O., Toxic Effects of Various Modifications of a Nanoparticle Following Inhalation (Research Project F 2246) (2013), The Federal Institute for Occupational Safety and Health Dortmund, Berlin, Dresden p. 405; Dumkova, J., Vrlikova, L., Vecera, Z., Putnova, B., Docekal, B., Mikuska, P., Fictum, P., Buchtova, V., Inhaled cadmium oxide nanoparticles: their in vivo fate and effect on target organs (2016) Int. J. Mol. Sci., 17 (6), p. 874; Elder, A., Gelein, R., Silva, V., Feikert, T., Opanashuk, L., Carter, J., Potter, R., Oberdörster, G., Translocation of inhaled ultrafine manganese oxide particles to the central nervous system (2006) Environ. Health Perspect., 114 (8), pp. 1172-1178; Ennan, A.A., Kiro, S.A., Oprya, M.V., Vishnyakov, V.I., Particle size distribution of welding fume and its dependency on conditions of shielded metal arc welding (2013) J. Aerosol Sci., 65, pp. 103-110; Grassian, V.H., O'Shaughnessy, P.T., Adamcakova-Dodd, A., Pettibone, J.M., Thorne, P.S., Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm (2007) Environ. Health Perspect., 115, pp. 397-402; ICRP, Publication 66: human respiratory tract model for radiological protection (1994) A Report of a Task Group of the International Commission on Radiological Protection, 24, pp. 1-482. , Ann. ICRP; International Institute of Welding, (2009) International Seminar Exposure to Ultrafine Particles in Welding Fumes, Hannover; Kao, Y.-Y., Cheng, T.-J., Yang, D.-M., Liu, P.-S., Demonstration of an olfactory bulb–brain translocation pathway for ZnO nanoparticles in rodent ells in vitro and in vivo (2012) J. Mol. Neurosci., 48 (2), pp. 464-471; Katsnelson, B.A., Privalova, L.I., Recruitment of phagocytizing cells into the respiratory tract as a response to the cytotoxic action of deposited particles (1984) Environ. Health Perspect., 55, pp. 313-325; Katsnelson, B.A., Morosova, K.I., Velichkovski, B.T., Antisilikotische Wirkung von Glutamat (1984) Arbeitsmed. Sozialmed. Präventivmed., 19 (7), pp. 153-156; Katsnelson, B.A., Privalova, L.I., Kislitsina, N.S., Podgaiko, G.A., Correlation between cytotoxicity and fibrogenicity of silicosis-inducing dusts (1984) Med. Lav., 75, pp. 450-462; Katsnelson, B.A., Konysheva, L.K., Privalova, L.I., Morosova, K.I., Development of a multicompartmental model of the kinetics of quartz dust in the pulmonary region of the lung during chronic inhalation exposure of rats (1992) Br. J. Ind. Med., 49, pp. 172-181; Katsnelson, B.A., Konyscheva, L.K., Sharapova, N.Y., Privalova, L.I., Prediction of the comparative intensity of pneumoconiotic changes caused by chronic inhalation exposure to dusts of different cytotoxicity by means of a mathematical model (1994) Occup. Environ. Med., 51, pp. 173-180; Katsnelson, B.A., Konysheva, L.K., Privalova, L.Y., Sharapova, N.Y., Quartz dust retention in rat lungs under chronic exposure simulated by a multicompartmental model: further evidence of the key role of the cytotoxicity of quartz particles (1997) Inhal. Toxicol., 9, pp. 703-715; Katsnelson, B.A., Privalova, L.I., Kuzmin, S.V., Degtyareva, T.D., Sutunkova, M.P., Yeremenko, O.S., Some peculiarities of pulmonary clearance mechanisms in rats after intratracheal instillation of magnetite (Fe3O4) suspensions with different particle sizes in the nanometer and micrometer ranges: are we defenseless against nanoparticles? (2010) Int. J. Occup. Environ. Health, 16, pp. 508-524; Katsnelson, B.A., Privalova, L.I., Degtyareva, T.D., Sutunkova, M.P., Yeremenko, O.S., Minigalieva, I.A., Experimental estimates of the toxicity of iron oxide Fe3O4 (magnetite) nanoparticles (2011) Cent. Eur. J. Occup. Environ. Med., 16, pp. 47-63; Katsnelson, B.A., Privalova, L.I., Kuzmin, S.V., Gurvich, V.B., Sutunkova, M.P., Kireyeva, E.P., Minigalieva, I.A., An approach to tentative reference levels setting for nanoparticles in the workroom air based on comparing their toxicity with that of their micrometric counterparts—a case study of iron oxide Fe3O4 (2012) ISRN Nanotechnol., 2012 (2012). , Article ID 143613, 12 pages; Katsnelson, B.A., Privalova, L.I., Gurvich, V.B., Makeyev, O.H., Shur, V.Y., Beikin, J.B., Comparative in vivo assessment of some adverse bio-effects of equidimensional gold and silver nanoparticles and the attenuation of nanosilver's effects with a complex of innocuous bioprotectors (2013) Int. J. Mol. Sci., 14, pp. 2449-2483; Katsnelson, B.A., Privalova, L.I., Gurvich, V.B., Kuzmin, S., V, Kireyeva, E.P., Minigalieva, I.A., Sutunkova et al, M.P., Enhancing population's resistance to toxic exposures as an auxilliary tool of decreasing environmental and occupational health risks (a self-overview) (2014) J. Environ. Prot., 5, pp. 1435-1449. , Special Issue Environment Contamination and Toxicology; Katsnelson, B.A., Privalova, L.I., Sutunkova, M.P., Gurvich, V.B., Loginova, N.V., Minigalieva, I.A., Some inferences from in vivoexperiments with metal and metal oxide nanoparticles: the pulmonary phagocytosis response, subchronic systemic toxicity and genotoxicity, regulatory proposals, searching for bioprotectors (a self-overview) (2015) Int. J. Nanomed., 10, pp. 3013-3029; Kolanjiyil, A.V., Deposited nanomaterial mass transfer from lung airways to systemic regions (2013) A Thesis for MSc Degree, , North Cariolina State University Raleigh, NC; Kreyling, W.G., Semmler-Behnke, M., Takenaka, S., Möller, W., Differences in the biokinetics of inhaled nano- versus micron-sized particles (2013) Acc. Chem. Res., 46 (3), pp. 714-722; Lehnert, M., Pesch, B., Lotz, A., Pelzer, J., Kendzia, B., Gawrych, K., Heinze, E., Brüning, T., Exposure to inhalable, respirable, and ultrafine particles in welding fume (2012) Ann. Occup. Hyg., 56 (5), pp. 557-567; Lewinski, N., Graczyk, H., Riediker, M., Human inhalation exposure to iron oxide particles (2013) BioNanoMat, 14 (1-2), pp. 5-23; Liu, J., Feng, X., Wei, L., Chen, L., Song, B., Shao, L., The toxicology of ion-shedding zinc oxide nanoparticles (2016) Crit. Rev. Toxicol., 46 (4), pp. 348-384; Maulderly, J.L., McCunney, R.G., Particle overload in the rat lung and lung cancer (1997) Implications for Human Risk Assessment, , Taylor & Francis Philadelphia, USA; Minigalieva, I.A., Katsnelson, B.A., Privalova, L.I., Sutunkova, M.P., Gurvich, V.B., Shur, V.Y., Attenuation of combined nickel (II) oxide and manganese (II, III) oxide nanoparticles’ adverse effects with a complex of bioprotectors (2015) Int. J. Mol. Sci., 16 (9), pp. 22555-22583; Morosova, K.I., Aronova, G.V., Katsnelson, B.A., On the defensive action of glutamate on the cytotoxicity and fibrogenicity of quartz dust (1982) Br. J. Ind. Med., 39 (3), pp. 244-252; Morosova, K.I., Katsnelson, B.A., Rotenberg, Y.S., Belobragina, G.V., A further experimental study of antisilicotic effect of glutamate (1984) Br. J. Ind. Med., 41 (4), pp. 518-525; Neuberger, M., Umweltepidemiologie und Toxikologie von Nanopartikeln (2007) Nano–Chancen und Risiken aktueller Technologien, pp. 181-197. , A. Gazsó S. Greßler F. Schiemer Springer, Wien New York; Oberdörster, G., Sharp, Z., Atudore, V., Elder, A., Gelein, R., Kreylin, W., Translocation of inhaled ultrafine particle to the brainI (2004) Inhal. Toxicol., 16 (6/7), pp. 437-445; Petin, L.M., Data for establishing the maximal allowable concentration of silica-containing condensation aerosols (1978) Gigiyena Truda, 6, pp. 28-33. , Russian; Podgayko, G.A., Katsnelson, B.A., Lemyasev, M.F., Solomina, S.N., Saitov, V.A., Russjayeva, L.V., New data for assessment of the silicosis risks due to industrial aerosols based on a colloidal solution of silicic acid (1982) Occupational Diseases Due to Dusts, , S.G. Domnin B.A. Katsnelson Erisman's Institute Moscow (Issue 7); Privalova, L.I., Katsnelson, B.A., Osipenko, A.B., Yushkov, B.H., Babushkina, L.G., Response of a phagocyte cell system to products of macrophage breakdown as a probable mechanism of alveolar phagocytosis adaptation to deposition of particles of different cytotoxicity (1980) Environ. Health Perspect., 35, pp. 205-218; Privalova, L.I., Katsnelson, B.A., Yelnichnykh, L.N., Some peculiarities of the pulmonary phagocytotic response, dust kinetics, and silicosis development during long term exposure of rats to high quartz levels (1987) Br. J. Ind. Med., 44, pp. 228-235; Privalova, L.I., Katsnelson, B.A., Sharapova, N.Y., Kislitsina, N.S., On the relationship between activation and the breakdown of macrophages in pathogenesis of silicosis (1995) Med. Lav., 86, pp. 511-521; Privalova, L.I., Katsnelson, B.A., Loginova, N.V., Gurvich, V.B., Shur, V.Y., Valamina, I.E., Subchronic toxicity of copper oxide nanoparticles and its attenuation with the help of a combination of bioprotectors (2014) Int. J. Mol. Sci., 15, pp. 12379-12406; Ramahandran, G., Assessing Nanoparticle Risk to Human Health (2016), Elsevier Amsterdam; Renwick, L., Brown, D., Clouter, K., Donaldson, K., Increased inflammation and altered macrophage chemotactic responses caused by two ultrafine particle types (2004) Occup. Environ. Med., 61, pp. 442-447; Sager, T.M., Porter, D.W., Robinson, V.A., Lindsley, W.G., Schwegler-Berry, V.A., Castranova, V., Improved method to disperse nanoparticles in vitro and in vivo investigation of toxicity (2007) Nanotoxicology, 1, pp. 118-129; Stoeger, T., Reinhard, C., Takenaka, S., Schroeppel, A., Karg, E., Ritter, B., Instillation of six different ultrafine carbon particles indicates a surface area threshold dose for acute lung inflammation in mice (2006) Environ. Health Perspect., 114 (3), pp. 328-333; Utembe, W., Potgieter, K., Stefaniak, A.B., Gulumian, M., Dissolution and biodurability: important parameters needed for risk assessment of nanomaterials (2015) Part. Fibre Toxicol., 12 (11); Warheit, D.B., Reed, K.L., Sayes, C.M., A role fore surface reactivity in TiO2 and quartz-related nanoparticle pulmonary toxicity (2009) Nanotoxicology, 3, pp. 181-187; Zhu, M.T., Feng, W.Y., Wang, Y., Wang, B., Wang, M., Ouyang, H., Particokinetics and extrapulmonary translocation of intratracheally instilled ferric oxide nanoparticles in rats and the potential health risk assessment (2009) Toxicol. Sci., 107 (2), pp. 342-351
Correspondence Address Katsnelson, B.A.; The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers of the RospotrebnadzorRussian Federation; email: bkaznelson@etel.ru
Publisher Elsevier Ireland Ltd
CODEN TXCYA
Language of Original Document English
Abbreviated Source Title Toxicology
Source Scopus