References |
Aisen, P., Listowsky, I., Iron transport and storage proteins (1980) Annu. Rev. Biochem., 49, pp. 357-393; Theil, E.C., Ferritin: structure, gene regulation, and cellular function in animals, plants, and microorganisms (1987) Annu. Rev. Biochem., 56, pp. 289-315; Proulx-Curry, P.M., Chasteen, N.D., Molecular aspects of iron uptake and storage in ferritin (1995) Coord. Chem. Rev., 144, pp. 347-368; Chasteen, N.D., Harrison, P.M., Mineralization in ferritin: an efficient means of iron storage (1999) J. Struct. Biol., 126, pp. 182-194; Hintze, K.J., Theil, E.C., Cellular regulation and molecular interactions of the ferritins (2006) Cell. Mol. Life Sci., 63, pp. 591-600; Arosio, P., Ingrassia, R., Cavadini, P., Ferritins: a family of molecules for iron storage, antioxidation and more (2009) Biochim. Biophys. Acta, 1790, pp. 589-599; Crichton, R.R., Declercq, J.-P., X-ray structures of ferritins and related proteins (2010) Biochim. Biophys. Acta, 1800, pp. 706-718; Theil, E.C., Behera, R.K., Tosha, T., Ferritins for chemistry and for life (2013) Coord. Chem. Rev., 257, pp. 579-586; Massover, W.H., Ultrastructure of ferritin and apoferritin: a review (1993) Micron, 24, pp. 389-437; Cowley, J.M., Janney, D.E., Gerkin, R.C., Buseck, P.R., The structure of ferritin cores determined by electron nanodiffraction (2000) J. Struct. Biol., 131, pp. 210-216; Cowley, J.M., Applications of electron nanodiffraction (2004) Micron, 35, pp. 345-360; Quintana, C., Cowley, J.M., Marhic, C., Electron nanodiffraction and high-resolution electron microscopy studies of the structure and composition of physiological and pathological ferritin (2004) J. Struct. Biol., 147, pp. 166-178; Joo, M.-S., Tourillon, G., Sayers, D.E., Theil, E.C., Rapid reduction of iron in horse spleen ferritin by thioglycolic acid measured by dispersive X-ray absorption spectroscopy (1990) Biol. Met., 3, pp. 171-175; Galvez, N., Fernandez, B., Sanchez, P., Cuesta, R., Ceolin, M., Clemente-Leon, M., Trasobares, S., Dominguez-Vera, J.M., Comparative structural and chemical studies of ferritin cores with gradual removal of their iron contents (2008) J. Am. Chem. Soc., 130, pp. 8062-8068; Pan, Y.-H., Vaughan, G., Brydson, R., Bleloch, A., Gass, M., Sader, K., Brown, A., Electron-beam-induced reduction of Fe3 + in iron phosphate dihydrate, ferrihydrite, haemosiderin and ferritin as revealed by electron energy-loss spectroscopy (2010) Ultramicroscopy, 110, pp. 1020-1032; Pan, Y.-H., Sader, K., Powell, J.J., Bleloch, A., Gass, M., Trinick, J., Warley, A., Brown, A., 3D morphology of the human hepatic ferritin mineral core: new evidence for a subunit structure revealed by single particle analysis of HAADF-STEM images (2009) J. Struct. Biol., 166, pp. 22-31; Lopez-Castro, J.D., Delgado, J.J., Perez-Omil, J.A., Galvez, N., Cuesta, R., Watt, R.K., Domınguez-Vera, J.M., A new approach to the ferritin iron core growth: influence of the H/L ratio on the core shape (2012) Dalton Trans., 41, pp. 1320-1324; Vértes, A., Korecz, L., Burger, K., Mössbauer Spectroscopy (1979), pp. 344-392. , Elsevier Amsterdam, Akadémia Kiadó, Budapest; Trautwein, A.X., Bill, E., Bominaar, E.L., Winkler, H., Iron-containing proteins and related analogs-complementary Mössbauer, EPR and magnetic susceptibility studies (1991) Struct. Bond., 78, pp. 1-95; Papaefthymiou, G.C., The Mössbauer and magnetic properties of ferritin cores (2010) Biochim. Biophys. Acta, 1800, pp. 886-897; Kamnev, A.A., Kovács, K., Alenkina, I.V., Oshtrakh, M.I., Mössbauer spectroscopy in biological and biomedical research (2013) Mössbauer Spectroscopy: Applications in Chemistry, Biology, and Nanotechnology, pp. 272-291. , V.K. Sharma G. Klingelhofer T. Nishida first ed. John Wiley & Sons, Inc; Berg, K.A., Bowen, L.H., Hedges, S.W., Bereman, R.D., Vance, C.T., Identification of ferrihydrite in polysaccharide iron complex by Mössbauer spectroscopy and X-ray diffraction (1984) J. Inorg. Biochem., 22, pp. 125-135; St. Pierre, T.G., Bell, S.H., Dickson, D.P.E., Mann, S., Webb, J., Moore, G.R., Williams, R.J.P., Mössbauer spectroscopic studies of the cores of human, limpet and bacterial ferritins (1986) Biochim. Biophys. Acta, 870, pp. 127-134; Bauminger, E.R., Harrison, P.M., Nowik, I., Treffry, A., Composition and dynamics of iron in iron-poor ferritin (1988) Hyperfine Interact., 42, pp. 873-876; Frankel, R.B., Papaefthymiou, G.C., Watt, G.D., Variation of superparamagnetic properties with iron loading in mammalian ferritin (1991) Hyperfine Interact., 66, pp. 71-82; Oshtrakh, M.I., Kopelyan, E.A., Semionkin, V.A., Livshits, A.B., Krylova, V.E., Prostakova, T.M., Kozlov, A.A., An analysis of iron–dextran complexes by Mössbauer spectroscopy and positron annihilation technique (1994) J. Inorg. Biochem., 54, pp. 285-295; Bauminger, E.R., Harrison, P.M., Hechel, D., Nowik, I., Treffry, A., How does the ferritin core form? (1994) Hyperfine Interact., 91, pp. 835-839; Coe, E.M., Bowen, L.H., Bereman, R.D., Speer, J.A., Monte, W.T., Scaggs, L., A study of an iron dextran complex by Mössbauer spectroscopy and X-ray diffraction (1995) J. Inorg. Biochem., 57, pp. 63-71; Oshtrakh, M.I., Semionkin, V.A., Prokopenko, P.G., Milder, O.B., Livshits, A.B., Kozlov, A.A., Hyperfine interactions in the iron cores from various pharmaceutically important iron–dextran complexes and human ferritin: a comparative study by Mössbauer spectroscopy (2001) Int. J. Biol. Macromol., 29, pp. 303-314; Funk, F., Long, G.J., Hautot, D., Büchi, R., Christl, I., Weidler, P.G., Physical and chemical characterization of therapeutic iron containing materials: a study of several superparamagnetic drug formulations with the β-FeOOH or ferrihydrite structure (2001) Hyperfine Interact., 136, pp. 73-95; Oshtrakh, M.I., Milder, O.B., Semionkin, V.A., Prokopenko, P.G., Livshits, A.B., Kozlov, A.A., Pikulev, A.I., An analysis of quadrupole splitting of the Mössbauer spectra of ferritin and iron–dextran complexes in relation to the iron core microstructural variations (2002) Z. Naturforsch., 57A, pp. 566-574; Bou-Abdallah, F., Carney, E., Chasteen, N.D., Arosio, P., Viescas, A.J., Papaefthymiou, G.C., A comparative Mössbauer study of the mineral cores of human H-chain ferritin employing dioxygen and hydrogen peroxide as iron oxidants (2007) Biophys. Chem., 130, pp. 114-121; Madsen, D.E., Hansen, M.F., Bendix, J., Mørup, S., On the analysis of magnetization and Mössbauer data for ferritin (2008) Nanotechnology, 19, p. 315712; Papaefthymiou, G.C., Nanoparticle magnetism (2009) Nano Today, 4, pp. 438-447; Brooks, R.A., Vymazal, J., Goldfarb, R.B., Bulte, J.W., Aisen, P., Relaxometry and magnetometry of ferritin (1998) Magn. Reson. Med., 40, pp. 227-235; Kilcoyne, S.H., Gorisek, A., Magnetic properties of iron dextran (1998) J. Magn. Magn. Mater., 177-181, pp. 1457-1458; Oshtrakh, M.I., Semionkin, V.A., Milder, O.B., Novikov, E.G., Mössbauer spectroscopy with high velocity resolution: new possibilities in biomedical research (2009) J. Mol. Struct., 924-926, pp. 20-26; Oshtrakh, M.I., Semionkin, V.A., Milder, O.B., Novikov, E.G., Possibilities of Mössbauer spectroscopy with a high velocity resolution in studying small variations in 57Fe hyperfine parameters of iron-containing proteins (2010) Bull. Russ. Acad. Sci. Phys., 74, pp. 407-411; Oshtrakh, M.I., Semionkin, V.A., Milder, O.B., Alenkina, I.V., Novikov, E.G., Biomedical application of Mössbauer spectroscopy with a high velocity resolution: revealing of small variations (2010) Spectroscopy, 24, pp. 593-599; Oshtrakh, M.I., Semionkin, V.A., Alenkina, I.V., Milder, O.B., Mössbauer spectroscopy with a high velocity resolution in the study of iron-containing proteins and model compounds (2011) Spectrochim. Acta A Mol. Biomol. Spectrosc., 79, pp. 777-783; Oshtrakh, M.I., Milder, O.B., Semionkin, V.A., Mössbauer spectroscopy with high velocity resolution in the study of ferritin and Imferon: preliminary results (2008) Hyperfine Interact., 185, pp. 39-46; Oshtrakh, M.I., Alenkina, I.V., Dubiel, S.M., Semionkin, V.A., Structural variations of the iron cores in human liver ferritin and its pharmaceutically important models: a comparative study using Mössbauer spectroscopy with a high velocity resolution (2011) J. Mol. Struct., 993, pp. 287-291; Alenkina, I.V., Oshtrakh, M.I., Klepova, Y.V., Dubiel, S.M., Sadovnikov, N.V., Semionkin, V.A., Comparative study of the iron cores in human liver ferritin, its pharmaceutical models and ferritin in chicken liver and spleen tissues using Mössbauer spectroscopy with a high velocity resolution (2013) Spectrochim. Acta A Mol. Biomol. Spectrosc., 100, pp. 88-93; Alenkina, I.V., Oshtrakh, M.I., Semionkin, V.A., Kuzmann, E., Comparative study of nanosized iron cores in human liver ferritin and its pharmaceutically important models Maltofer® and Ferrum Lek using Mössbauer spectroscopy (2013) Bull. Russ. Acad. Sci. Phys., 77, pp. 739-744; Alenkina, I.V., Oshtrakh, M.I., Klencsár, Z., Kuzmann, E., Chukin, A.V., Semionkin, V.A., 57Fe Mössbauer spectroscopy and electron paramagnetic resonance studies of human liver ferritin, Ferrum Lek and Maltofer® (2014) Spectrochim. Acta A Mol. Biomol. Spectrosc., 130, pp. 24-36; Alenkina, I.V., Oshtrakh, M.I., Tugarova, A.V., Biró, B., Semionkin, V.A., Kamnev, A.A., Study of the rhizobacterium Azospirillum brasilense Sp245 using Mössbauer spectroscopy with a high velocity resolution: implication for the analysis of ferritin-like iron cores (2014) J. Mol. Struct., 1073, pp. 181-186; Oshtrakh, M.I., Alenkina, I.V., Kuzmann, E., Klencsár, Z., Semionkin, V.A., Anomalous Mössbauer line broadening for nanosized hydrous ferric oxide cores in ferritin and its pharmaceutical analogue Ferrum Lek in the temperature range 295–90 K (2014) J. Nanopart. Res., 16, p. 2363; Alenkina, I.V., Oshtrakh, M.I., Klencsár, Z., Kuzmann, E., Semionkin, V.A., Mössbauer spectroscopy of human liver ferritin and its analogue Ferrum Lek in the temperature range 295–90 K: comparison within the homogeneous iron core model (2014) Proceedings of the International Conference “Mössbauer Spectroscopy in Materials Science 2014”, 1622, pp. 142-148. , J. Tuček M. Miglierini (AIP Conference Proceedings, Melville, New York); Oshtrakh, M.I., Semionkin, V.A., Milder, O.B., Novikov, E.G., Mössbauer spectroscopy with high velocity resolution: an increase of analytical possibilities in biomedical research (2009) J. Radioanal. Nucl. Chem., 281, pp. 63-67; Semionkin, V.A., Oshtrakh, M.I., Milder, O.B., Novikov, E.G., A high velocity resolution Mössbauer spectrometric system for biomedical research (2010) Bull. Russ. Acad. Sci. Phys., 74, pp. 416-420; Oshtrakh, M.I., Semionkin, V.A., Mössbauer spectroscopy with a high velocity resolution: advances in biomedical, pharmaceutical, cosmochemical and nanotechnological research (2013) Spectrochim. Acta A Mol. Biomol. Spectrosc., 100, pp. 78-87; Heald, S.M., Stern, E.A., Bunker, B., Holt, E.M., Holt, S.L., Structure of the iron-containing core in ferritin by the extended X-ray absorption fine structure technique (1979) J. Am. Chem. Soc., 101, pp. 67-73; Kilcoyne, S.H., Lawrence, J.L., The structure of iron dextran cores (1999) Z. Krist., 214, pp. 666-669; Miglierini, M., Dekan, J., Kopani, M., Lančok, A., Kohout, J., Cieslar, M., Iron in Spleen Tissues (2012) Proceedings of the International Conference “Mössbauer Spectroscopy in Materials Science 2012”, 1489, pp. 107-114. , J. Tuček L. Machala (AIP Conference Proceedings, Melville, New York); Kopani, M., Miglierini, M., Lančok, A., Dekan, J., Čaplovicova, M., Jakubovsky, J., Boča, R., Mrazova, H., Iron oxides in human spleen (2015) Biometals, 28, pp. 913-928; Felner, I., Alenkina, I.V., Vinogradov, A.V., Oshtrakh, M.I., Peculiar magnetic observations in pathological human liver (2016) J. Magn. Magn. Mater., 399, pp. 118-122 |