The initial magnetic susceptibility of polydisperse ferrofluids: A comparison between experiment and theory over a wide range of concentration / Solovyova A.Y., Goldina O.A., Ivanov A.O., Lebedev A.V., Elfimova E.A. // Journal of Chemical Physics. - 2016. - V. 145, l. 8.

ISSN:
00219606
Type:
Article
Abstract:
Temperature dependencies of the static initial magnetic susceptibility for ferrofluids at various concentrations are studied using experiment and statistical-mechanical theories. Magnetic susceptibility measurements are carried out for twelve samples of magnetite-based fluids stabilized with oleic acid over a wide range of temperatures (210 K ≲T ≲ 390 K); all samples have the same granulometric composition but different volume ferroparticle concentrations (0.2 ≲ φ ≲ 0.5). Experimental results are analyzed using three theories: the second-order modified mean-field theory (MMF2) [A. O. Ivanov and O. B. Kuznetsova, Phys. Rev. E 64, 41405 (2001)]; its correction for polydisperse ferrofluids arising from Mayer-type cluster expansion and taking into account the first terms of the polydisperse second virial coefficient [A. O. Ivanov and E. A. Elfimova, J. Magn. Magn. Mater 374, 327 (2015)]; and a new theory based on MMF2 combined with the first terms of the polydisperse second and third virial contributions to susceptibility. It turns out that the applicability of each theory depends on the experimental sample density. If twelve ferrofluid samples are split into three groups of strong, moderate, and low concentrated fluids, the temperature dependences of the initial magnetic susceptibility in each group are very precisely described by one of the three theories mentioned above. The determination of a universal formula predicting a ferrofluid susceptibility over a broad range of concentrations and temperatures remains as a challenge. © 2016 Author(s).
Author keywords:
Index keywords:
Magnetic fluids; Magnetic susceptibility; Magnetism; Mean field theory; Polydispersity; Temperature distribution; Granulometric compositions; Magnetic susceptibility measurements; Modified mean fields
DOI:
10.1063/1.4961405
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84985018948&doi=10.1063%2f1.4961405&partnerID=40&md5=3c9a56fe63a69c85a4a6b74ffaea70e8
Соавторы в МНС:
Другие поля
Поле Значение
Art. No. 084909
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84985018948&doi=10.1063%2f1.4961405&partnerID=40&md5=3c9a56fe63a69c85a4a6b74ffaea70e8
Affiliations Institute of Mathematics and Computer Sciences, Ural Federal University, 51 Lenin Avenue, Ekaterinburg, Russian Federation; Institute of Continuous Media Mechanics, UB RAS, 1 Korolyov st., Perm, Russian Federation
Funding Details 02.A03.21.0006, Ministry of Education and Science of the Russian Federation; 13-01-96041, RFBR, Russian Foundation for Basic Research; 14-01-96007, RFBR, Russian Foundation for Basic Research; 16-31-00089, RFBR, Russian Foundation for Basic Research
Funding Text A.V.L. was supported by the Russian Foundation for Basic Research [Projects Nos. 13-01-96041 and 14-01-96007]; O.A.G., E.A.E., and A.O.I. gratefully acknowledge research funding from the Ministry of Education and Science of the Russian Federation [Contract No. 02.A03.21.0006, Project No. 3.12.2014/K)]; the work of A.Y.S. and O.A.G. was supported by the Russian Foundation for Basic Research [Projects No. 16-31-00089 mol-a].
References Ortega, D., Perez, N., Vilas, J.L., Garitaonandia, J.S., Suzuki, K., Marin, J.R., Rodriguez, M., Nonylphenol polyethoxylate coated body-center-cubic iron nanocrystals for ferrofluids with technical applications (2013) J. Appl. Phys., 113, p. 17B505; Barala, S.K., Arora, M., Puri, C., Saini, K.K., Kotnala, R.K., Saini, P.K., Ferrofluid/activated carbon composites for water purification and EMI shielding applications (2013) Magnetohydrodynamics, 49, p. 277; Dobson, J., Magnetic micro- and nano-particle-based targeting for drug and gene delivery (2006) Nanomedicine, 1, p. 31; Pankhurst, Q.A., Thanh, N.T.K., Jones, S.K., Dobson, J., Progress in applications of magnetic nanoparticles in biomedicine (2009) J. Phys. D: Appl. Phys., 42; Khushrushahi, S., Zahn, M., Hatton, T.A., Magnetic separation method for oil spill cleanup (2013) Magnetohydrodynamics, 49, p. 546; Wertheim, M.S., Exact solution of the mean spherical model for fluids of hard spheres with permanent electric dipole moments (1971) J. Chem. Phys., 55, p. 4291; Morozov, K.I., Lebedev, A.V., The effect of magneto-dipole interactions on the magnetization curves of ferrocolloids (1990) J. Magn. Magn. Mater, 85, p. 51; Ivanov, A.O., Kuznetsova, O.B., Magnetic properties of dense ferrofluids: An influence of interparticle correlations (2001) Phys. Rev. e, 64, p. 41405; Joslin, C., The third dielectric and pressure virial coefficients of dipolar hard sphere fluids (1981) Mol. Phys., 42, p. 1507; Patey, G.N., An integral equation theory for the dense dipolar hard-sphere fluid (1977) Mol. Phys., 34, p. 427; Fries, P.H., Patey, G.N., The solution of the hypernetted-chain approximation for fluids of nonspherical particles. A general method with application to dipolar hard spheres (1985) J. Chem. Phys., 82, p. 429; Valiskó, M., Boda, D., Liszi, J., Szalai, I., The dielectric constant of polarizable fluids from the renormalized perturbation theory (2002) Mol. Phys., 100, p. 3239; Szalai, I., Nagy, S., Dietrich, S., Nonlinear dielectric effect of dipolar fluids (2009) J. Chem. Phys., 131; Szalai, I., Dietrich, S., Magnetization of multicomponent ferrofluids (2011) J. Phys.: Condens. Matter, 23; Szalai, I., Nagy, S., Dietrich, S., Comparison between theory and simulations for the magnetization and the susceptibility of polydisperse ferrofluids (2013) J. Phys.: Condens. Matter, 25; Morozov, K.I., The dielectric virial expansion and the models of dipolar hard-sphere fluid (2007) J. Chem. Phys., 126; Rushbrooke, G.S., On incorporating the second dielectric virial coefficient into theories which omit it (1981) Mol. Phys., 43, p. 975; Huke, B., Lücke, M., Magnetization of ferrofluids with dipolar interactions: A born-mayer expansion (2000) Phys. Rev. e, 62, p. 6875; Huke, B., Lücke, M., Magnetization of concentrated polydisperse ferrofluids: Cluster expansion (2003) Phys. Rev. e, 67; Elfimova, E.A., Ivanov, A.O., Camp, P.J., Thermodynamic properties of ferrofluids in applied magnetic fields (2013) Phys. Rev. e, 88; Elfimova, E.A., Ekaterinchuk, E.D., Solovyova, A.Y., Ivanov, A.O., Thermodynamic properties of concentrated ferrofluids and the modified meanfield conception (2013) Magnetohydrodynamics, 49, p. 111; Elfimova, E.A., Ivanov, A.O., Camp, P.J., Theory and simulation of anisotropic pair correlations in ferrofluids in magnetic fields (2012) J. Chem. Phys., 136; Pshenichnikov, A.F., Lebedev, A.V., Low-temperature susceptibility of concentrated magnetic fluids (2004) J. Chem. Phys., 121, p. 5455; Lebedev, A.V., Dipole interparticle interaction in magnetic fluids (2014) Colloid J., 76, p. 334; Ivanov, A.O., Elfimova, E.A., Low-temperature magnetic susceptibility of concentrated ferrofluids: The influence of polydispersity (2015) J. Mag. Mag. Mater, 374, p. 327; Goldina, O.A., Lebedev, A.V., Ivanov, A.O., Elfimova, E.A., Temperature dependence of initial magnetic susceptibility of polydisperse ferrofluids: A critical comparison between experiment and theory (2016) Magnetohydrodynamics, 52, p. 35; Camp, P.J., Elfimova, E.A., Ivanov, A.O., The effects of polydispersity on the initial susceptibilities of ferrofluids (2014) J. Phys.: Condens. Matter, 26; Pshenichnikov, A.F., Shurubor, I.Yu., The effect of temperature on the separation of polydisperse magnetic fluids (1988) Magnetohydrodynamics, 24, p. 417; Rosensweig, R., (1985) Ferrohydrodynamics, , (Cambridge University Press, Cambridge); Ivanov, A.O., Kuznetsova, O.B., Magnetogranulometric analysis of ferrocolloids: Second-order modified mean field theory (2006) Colloid J., 68, p. 430; Pshenichnikov, A.F., Equilibrium magnetization of concentrated ferrocolloids (1995) J. Magn. Magn. Mater, 145, p. 319; Kantorovich, S., Ivanov, A.O., Rovigatti, L., Tavares, J.M., Sciortino, F., Nonmonotonic magnetic susceptibility of dipolar hard-spheres at low temperature and density (2013) Phys. Rev. Lett., 110
Publisher American Institute of Physics Inc.
CODEN JCPSA
Language of Original Document English
Abbreviated Source Title J Chem Phys
Source Scopus