Affiliations |
Bulashevich Institute of Geophysics, Ural Branch, Russian Academy of Sciences, ul. Amundsena 100, Yekaterinburg, Russian Federation; Krasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences, ul. Sof’i Kovalevskoi 16, Yekaterinburg, Russian Federation; Yeltsin Ural Federal University, ul. Mira 19, Yekaterinburg, Russian Federation |
References |
Akimova, E.N., Martyshko, P.S., Misilov, V.E., Algorithms for solving the structural gravity problem in a multilayer medium (2013) Dokl. Earth Sci., 453 (2), pp. 1278-1281; Akimova, E.N., Misilov, V.E., Skurydina, A.F., Parallel algorithms for solving a structural inverse magnetic problem on multiprocessing computer systems (2014) Vestn. Ufim. Gos. Aviats. Tekh. Univ., 18 (4), pp. 206-215; Gilbert, J.C., Nocedal, J., Global convergence properties of conjugate gradient methods for optimization, Soc. Ind. Appl. Math (1999) J. Optim., 1, pp. 21-42; Kaltenbacher, B., Neubauer, A., Scherzer, O., Iterative Regularization Methods for Nonlinear Ill-Posed Problems (2008) Radon Series on Computational and Applied Mathematics; Martyshko, P.S., Prutkin, I.L., Technology for separating the sources of the gravitational field by depth (2003) Geofiz. Zh., 25 (3), pp. 159-168; Martyshko, P.S., Ladovskii, I.V., Tsidaev, A.G., Construction of regional geophysical models based on the joint interpretation of gravity and seismic data (2010) Izv., Phys Solid Earth, 46 (11), pp. 931-942; Martyshko, P.S., Pyankov, V.A., Akimova, E.N., Vasin, V.V., Misilov, V.E., On solving a structural gravity problem on supercomputer Uran for the Bashkir Predural’s area (2013) GeoInformatics 2013: 12th Int. Conf. on Geoinformatics: Theoretical and Applied Aspects; Martyshko, P.S., Fedorova, N.V., Akimova, E.N., Gemaidinov, D.V., Studying the structural features of the lithospheric magnetic and gravity fields with the use of parallel algorithms (2014) Izv., Phys Solid Earth, 50 (4), pp. 508-513; Numerov, B.V., Interpretation of gravitational observations in the case of a single contact surface (1930) Dokl. Akad. Nauk SSSR, 21, pp. 569-574; Prutkin, I.L., On the solution of three-dimensional inverse problem of gravimetry in the class of contacting surfaces by the local correction method (1986) Izv. Akad. Nauk SSSR, Fiz. Zemli, 1, pp. 67-77; Strakhov, V.N., On the inverse problem of logarithmic potential for a contact surface (1974) Izv. Akad. Nauk SSSR, Fiz. Zemli, 2, pp. 43-65 |