References |
Aksoy, A., Duman, F., Sezen, G., Heavy metal accumulation and distribution in narrow-leaved cattail (Typha angustifolia) and common reed (Phragmites australis) (2005) J Fresh Water Ecol, 20, pp. 783-785; Alkhateeb, A.N., Кa, A., Hussein, F.H., Ismail, J.K., Phytoremediation of industrial wastewater (2005) Asian J Chem, 17 (3), pp. 1818-1822; Anning, A.K., Korsah, P.E., Addo-Fordjour, P., Phytoremediation of wastewater with Limnocharis flava, Thalia geniculata and Typha latifolia in constructed wetlands (2013) Int J Phytorem, 15 (5), pp. 452-464; Aravind, P., Prasad, M.N.V., Cadmium-induced toxicity reversal by zinc in Ceratophyllum demersum L. (a free floating aquatic macrophyte) together with exogenous supplements of amino- and organic acids (2005) Chemosphere, 61, pp. 1720-1733; Baker, A.J.M., Accumulators and excluders-strategies in response of plants to heavy metals (1981) J Plant Nutr, 3, pp. 643-654; Borisova, G.G., Chukina, N.V., Maleva, M.G., Prasad, M.N.V., Ceratophyllum demersum L. and Potamogeton alpinus Balb. from Iset’ river, Ural region, Russia differ in adaptive strategies to heavy metals exposure—a comparative study (2014) Int J Phytorem, 16, pp. 621-633; Carvalho, K.M., Martin, D.F., Removal of aqueous selenium by four aquatic plants (2001) J Aquat Plant Manage, 39, pp. 33-36; Chukina, N.V., Borisova, G.G., Structural and functional induces of higher aquatic plants from habitats differing in levels of anthropogenic impact (2010) Inland Water Biol, 3 (1), pp. 44-50; Clemens, S., Molecular mechanisms of plant metal tolerance and homeostasis (2001) Planta, 212, pp. 475-486; Cobbett, C.S., Phytochelatins and their roles in heavy metal detoxification (2000) Plant Physiol, 123, pp. 825-832; Cobbett, C.S., Goldsbrough, P., Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis (2002) Annu Rev Plant Physiol, 53, pp. 159-182; Demirezen, D., Aksoy, A., Common hydrophytes as bioindicators of iron and manganese pollutions (2006) Ecol Indic, 6, pp. 388-393; Devi, S.R., Prasad, M.N.V., Copper toxicity in Ceratophyllum demersum L. (Coontail), a free floating macrophyte: response of antioxidant enzymes and antioxidants (1998) Plant Sci, 138, pp. 157-165; di Toppi, L.S., Vurro, E., Rossi, L., Marabottini, R., Musetti, R., Careri, M., Maffini, M., Badiani, M., Different compensatory mechanisms in two metal-accumulating aquatic macrophytes exposed to acute cadmium stress in outdoor artificial lakes (2007) Chemosphere, 68, pp. 769-780; Ellman, G.L., Tissue sulfhydryl groups (1959) Arch Biochem Biophys, 82, pp. 70-77; Ermachenko, L.A., Ermachenko, V.M., (1999) Atomic-absorption analysis with a graphite furnace [in Russian], p. 219. , Podunova L.G., (ed), editor, PAIMS, Moscow:; (2010) Approval of water quality standards for fishery water bodies, including norms of maximum permissible concentrations of harmful substances in waters of fishery importance, , http://lawsforall.ru/index.php?ds=25267, Order of January 18, № 20 [in Russian]; Ferrat, L., Pergent-Martini, C., Roméo, M., Assessment of the use of biomarkers in aquatic plants for the evaluation of environmental quality: application to seagrasses (2003) Aquat Toxicol, 65, pp. 187-204; Grill, E., Winnacker, E.-L., Zenk, M.H., Phytochelatins, a class of heavy-metal-binding peptides from plants, are functionally analogous to metallothioneins (1987) Proc Natl Acad Sci USA, 84, pp. 439-443; Hall, J.L., Cellular mechanisms for heavy metal detoxification and tolerance (2002) J Exp Bot, 53, pp. 1-11; Hazra, M., Avishek, K., Pathak, G., Phytoremedial potential of Typha latifolia, Eichornia crassipers and Monochoria hastate found in contaminated water bodies across Ranchi city (India) (2015) Int J Phytorem, 17 (9), pp. 835-840; Keskinkan, O., Goksu, M.Z.L., Basibuyuk, M., Heavy metal adsorption properties of a submerged aquatic plant (Ceratophyllum demersum) (2004) Bioresour Technol, 92, pp. 197-200; Kozlov, M.V., Zvereva, E.L., Industrial barrens: extreme habitats created by non-ferrous metallurgy (2007) Rev Environ Sci Biotechnol, 6, pp. 231-259; Kumar, G.P., Prasad, M.N.V., Cadmium adsorption and accumulation by Ceratophyllum demersum L.: a fresh water macrophyte (2004) Eur J Miner Proces Environ Prot, 4, pp. 95-100; Kurilenko, V.V., Osmolovskaya, N.G., Bioindication role of higher plants in the diagnostics of aquatic ecosystems: case study of small water bodies in St (2007) Petersburg. Water Res, 34 (6), pp. 718-724; Leão, G.A., Oliveira, J.A., Farnese, F.S., Gusman, G.S., Felipe, R.T.A., Sulfur metabolism: different tolerances of two aquatic macrophytes exposed to arsenic (2014) Ecotoxicol Environ Saf, 105, pp. 36-42; Malec, P., Maleva, M.G., Prasad, M.N.V., Strzałka, K., Identification and characterization of Cd-induced peptides in Egeria densa (water weed): putative role in Cd detoxification (2009) Aquat Toxicol, 95, pp. 213-221; Maleva, M.G., Nekrasova, G.F., Malec, P., Prasad, M.N.V., Strzałka, K., Ecophysiological tolerance of Elodea canadensis to nickel exposure (2009) Chemosphere, 77, pp. 393-398; Manny, B.A., Nichols, S.J., Schloesser, D.W., Heavy metals in aquatic macrophytes drifting in a large river (1991) Hydrobiologia, 219, pp. 333-344; Marschner, H., (1995) Mineral Nutrition of Higher Plants, p. 889. , 2nd, London: Academic Press; Maserti, B.E., Ferrillo, V., Avdis, O., Nesti, U., Di Garbo, A., Catsiki, A., Maestrini, P.L., Relationship of non-protein thiol pools and accumulated Cd or Hg in the marine macrophyte Posidonia oceanica (L.) Delile (2005) Aquat Toxicol, 75, pp. 288-292; Mazej, Z., Germ, M., Trace element accumulation and distribution in four aquatic macrophytes (2009) Chemosphere, 74, pp. 642-647; Meharg, A.A., Mechanisms of plant resistance to metal and metalloid ions and potential biotechnological applications (2005) Plant Soil, 274, pp. 163-174; Menone, M.L., Pflugmacher, S., Effects of 3-chlorobiphenyl on photosynthetic oxygen production, glutathione content and detoxication enzymes in the aquatic macrophyte Ceratophyllum demersum (2005) Chemosphere, 60, pp. 79-84; (2015) On state and protection of the Sverdlovsk region environment in 2014, Ekaterinburg, Russia, Government Report [in Russian], , http://www.mprso.ru; Mishra, S., Srivastava, S., Tripathi, R.D., Govindarajan, R., Kuriakose, S.V., Prasad, M.N.V., Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L (2006) Plant Physiol Biochem, 44, pp. 25-37; Mishra, V.K., Tripathi, B.D., Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes (2008) Bioresour Technol, 99, pp. 7091-7097; Mishra, S., Tripathi, R.D., Srivastava, S., Dwivedi, S., Trivedi, P.K., Dhankher, O.P., Khare, A., Thiol metabolism play significant role during cadmium detoxification by Ceratophyllum demersum L (2009) Bioresour Technol, 100, pp. 2155-2161; Nagalakshmi, N., Prasad, M.N.V., Responses of glutathione cycle enzymes and glutathione metabolism to copper stress in Scenedesmus bijugatus (2001) Plant Sci, 160, pp. 291-299; Pawlik-Skowrońska, B., Relationships between acid-soluble thiol peptides and accumulated in the green alga Stichococcus bacillaris (2000) Aquat Toxicol, 50, pp. 221-230; Prado, C., Pagano, E., Prado, F., Rosa, M., Detoxification of Cr(VI) in Salvinia minima is related to seasonal-induced changes of thiols, phenolics and antioxidative enzymes (2012) J Hazard Mater, 239-240, pp. 355-361; Prasad, M.N.V., (2007) Aquatic plants for phytotechnology, pp. 259-274. , Singh S.N., Tripathi R.D., (eds), editors, Environmental Bioremediation Technologies, Springer, New York; Rahman, M.A., Hasegawa, H., Aquatic arsenic: phytoremediation using floating macrophytes (2011) Chemosphere, 83, pp. 633-646; Rai, P.K., Heavy metal pollution in aquatic ecosystems and its phytoremediation using wetland plants: an ecosustainable approach (2008) Int J Phytorem, 10 (2), pp. 133-160; Rauser, W.E., Phytochelatins and related peptides: structure, biosyntesis, and function (1995) Plant Physiol, 109, pp. 1141-1149; Rauser, W.E., Structure and function of metal chelators produced by plants (1999) The case for organic acids, amino acids, phytin, and metallothioneins. Cell Bioch Biophys, 31, pp. 19-48; Rofkar, J.R., Dwyer, D.F., Bobak, D.M., Uptake and toxicity of arsenic, copper, and silicon in Azolla caroliniana and Lemna minor (2014) Int J Phytorem, 16 (2), pp. 155-166; Schutzendubel, A., Polle, A., Plant responses to abiotic stress: heavy metal induced oxidative stress and protection by mycorrhization (2002) J Exp Bot, 53, pp. 1351-1365; Shah, K., Nongkynrih, J.M., Metal hyperaccumulation and bioremediation (2007) Biol Plant, 51 (4), pp. 618-634; Singh, R., Tripathi, R.D., Dwivedi, S., Kumar, A., Trivedi, P.K., Chakrabarty, D., Lead bioaccumulation potential of an aquatic macrophyte Najas indica are related to antioxidant system (2010) Bioresour Technol, 101, pp. 3025-3032; Srivastava, S., Mishra, S., Tripathi, R.D., Dwivedi, G.D.K., Copper-induced oxidative stress and responses of antioxidants and phytochelatins in Hydrilla verticillata (L.f.) Royle (2006) Aquat Toxicol, 80, pp. 405-415; Teisseire, H., Guy, V., Copper-induced changes in antioxidant enzymes activities in fronds of duckweed (Lemna minor) (2000) Plant Sci, 153, pp. 65-72; Török, A., Gulyás, Z., Szalai, G., Kocsy, G., Majdik, C., Phytoremediation capacity of aquatic plants is associated with the degree of phytochelatin polymerization (2015) J Hazard Mater, 299, pp. 371-378; Tripathi, R.D., Singh, R., Tripathi, P., Dwivedi, S., Chauhan, R., Adhikari, B., Trivedi, P.K., Arsenic accumulation and tolerance in rootless macrophyte Najas indica are mediated through antioxidants, amino acids and phytochelatins (2014) Aquat Toxicol, 157, pp. 70-80; Vukolov, J.A., Bases on statistical analysis (2004) Workshop on Statistical Methods and Research of Operations with Use of Statistica and Excel, p. 464. , [In Russian], Moscow: Forum, INFRA-M; Zenk, M.H., Heavy metal detoxification in higher plants—a review (1996) Gene, 179, pp. 21-30; Zhang, X., Uroic, M.K., Xie, W.-Y., Zhu, Y.-G., Chen, B.-D., McGrath, S.P., Feldmann, J., Zhao, F.-J., Phytochelatins play a key role in arsenic accumulation and tolerance in the aquatic macrophyte Wolffia globosa (2012) Environ Pollut, 165, pp. 18-24; Zurayk, R., Sukkariyah, B., Baalbaki, R., Common hydrophytes as bioindicators of nickel, chromium and cadmium pollution (2001) Water, Air Soil Pollut, 127, pp. 373-388 |