Thiols as biomarkers of heavy metal tolerance in the aquatic macrophytes of Middle Urals, Russia / Borisova G., Chukina N., Maleva M., Kumar A., Prasad M.N.V. // International Journal of Phytoremediation. - 2016. - V. 18, l. 10. - P. 1037-1045.

ISSN:
15226514
Type:
Article
Abstract:
Aquatic macrophytes, viz. Sagittaria sagittifolia L., Lemna gibba L., Elodea canadensis Michx., Batrachium trichophyllum (Chaix.) Bosch., Ceratophyllum demersum L. and Potamogeton sp. (P. perfoliatus L., P. alpinus Balb., P. crispus L., P. berchtoldii Fieber, P. friesii Rupr., P. pectinatus L.) were collected from 11 sites for determining their metal accumulation and thiols content. Cu2+, Ni2+, Mn2+, Zn2+, and Fe3+ exceeded maximum permissible concentrations in chosen sites. Significant transfer of metals from water to leaves is observed in the order of Ni2+ < Cu2+ < Zn2+ < Fe3+ < Mn2+. The maximum variation of bioconcentration factor was noticed for manganese. The accumulation of heavy metals in leaves was correlated with non-protein and protein thiols, confirming their important role in metal tolerance. The largest contribution was provided by Cu2+ (on the average r = 0.88, p < 0.05), which obviously can be explained as an important role of these ions in thiols synthesis. Increased synthesis of thiols in the leaves allows the usage of SH-containing compounds as biomarkers of metal tolerance. Considering accumulation of metals and tolerance, B. trichophyllum, C. demersum and L. gibba are the most suitable species for phytoremediation of highly multimetal contamination, while E. canadensis and some species of Potamageton are suitable for moderately metal-polluted sites. © 2016 Taylor & Francis Group, LLC.
Author keywords:
phytoremediation; water pollution; bioconcentration factor
Index keywords:
biological marker; heavy metal; thiol derivative; water pollutant; analysis; angiosperm; bioremediation; chemistry; metabolism; plant leaf; Russian Federation; water pollutant; Angiosperms; Biodegrada
DOI:
10.1080/15226514.2016.1183572
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84976299553&doi=10.1080%2f15226514.2016.1183572&partnerID=40&md5=80b8ef52dd72f4e57e4d2edb868d8269
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84976299553&doi=10.1080%2f15226514.2016.1183572&partnerID=40&md5=80b8ef52dd72f4e57e4d2edb868d8269
Affiliations Department of Plant Physiology and Biochemistry, Faculty of Biology, Institute of Natural Sciences, Ural Federal University, Ekaterinburg, Russian Federation; Department of Plant Sciences, University of Hyderabad, Hyderabad, India
Author Keywords phytoremediation; water pollution; bioconcentration factor
Chemicals/CAS thiol derivative, 13940-21-1; Biomarkers; Metals, Heavy; Sulfhydryl Compounds; Water Pollutants, Chemical
References Aksoy, A., Duman, F., Sezen, G., Heavy metal accumulation and distribution in narrow-leaved cattail (Typha angustifolia) and common reed (Phragmites australis) (2005) J Fresh Water Ecol, 20, pp. 783-785; Alkhateeb, A.N., Кa, A., Hussein, F.H., Ismail, J.K., Phytoremediation of industrial wastewater (2005) Asian J Chem, 17 (3), pp. 1818-1822; Anning, A.K., Korsah, P.E., Addo-Fordjour, P., Phytoremediation of wastewater with Limnocharis flava, Thalia geniculata and Typha latifolia in constructed wetlands (2013) Int J Phytorem, 15 (5), pp. 452-464; Aravind, P., Prasad, M.N.V., Cadmium-induced toxicity reversal by zinc in Ceratophyllum demersum L. (a free floating aquatic macrophyte) together with exogenous supplements of amino- and organic acids (2005) Chemosphere, 61, pp. 1720-1733; Baker, A.J.M., Accumulators and excluders-strategies in response of plants to heavy metals (1981) J Plant Nutr, 3, pp. 643-654; Borisova, G.G., Chukina, N.V., Maleva, M.G., Prasad, M.N.V., Ceratophyllum demersum L. and Potamogeton alpinus Balb. from Iset’ river, Ural region, Russia differ in adaptive strategies to heavy metals exposure—a comparative study (2014) Int J Phytorem, 16, pp. 621-633; Carvalho, K.M., Martin, D.F., Removal of aqueous selenium by four aquatic plants (2001) J Aquat Plant Manage, 39, pp. 33-36; Chukina, N.V., Borisova, G.G., Structural and functional induces of higher aquatic plants from habitats differing in levels of anthropogenic impact (2010) Inland Water Biol, 3 (1), pp. 44-50; Clemens, S., Molecular mechanisms of plant metal tolerance and homeostasis (2001) Planta, 212, pp. 475-486; Cobbett, C.S., Phytochelatins and their roles in heavy metal detoxification (2000) Plant Physiol, 123, pp. 825-832; Cobbett, C.S., Goldsbrough, P., Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis (2002) Annu Rev Plant Physiol, 53, pp. 159-182; Demirezen, D., Aksoy, A., Common hydrophytes as bioindicators of iron and manganese pollutions (2006) Ecol Indic, 6, pp. 388-393; Devi, S.R., Prasad, M.N.V., Copper toxicity in Ceratophyllum demersum L. (Coontail), a free floating macrophyte: response of antioxidant enzymes and antioxidants (1998) Plant Sci, 138, pp. 157-165; di Toppi, L.S., Vurro, E., Rossi, L., Marabottini, R., Musetti, R., Careri, M., Maffini, M., Badiani, M., Different compensatory mechanisms in two metal-accumulating aquatic macrophytes exposed to acute cadmium stress in outdoor artificial lakes (2007) Chemosphere, 68, pp. 769-780; Ellman, G.L., Tissue sulfhydryl groups (1959) Arch Biochem Biophys, 82, pp. 70-77; Ermachenko, L.A., Ermachenko, V.M., (1999) Atomic-absorption analysis with a graphite furnace [in Russian], p. 219. , Podunova L.G., (ed), editor, PAIMS, Moscow:; (2010) Approval of water quality standards for fishery water bodies, including norms of maximum permissible concentrations of harmful substances in waters of fishery importance, , http://lawsforall.ru/index.php?ds=25267, Order of January 18, № 20 [in Russian]; Ferrat, L., Pergent-Martini, C., Roméo, M., Assessment of the use of biomarkers in aquatic plants for the evaluation of environmental quality: application to seagrasses (2003) Aquat Toxicol, 65, pp. 187-204; Grill, E., Winnacker, E.-L., Zenk, M.H., Phytochelatins, a class of heavy-metal-binding peptides from plants, are functionally analogous to metallothioneins (1987) Proc Natl Acad Sci USA, 84, pp. 439-443; Hall, J.L., Cellular mechanisms for heavy metal detoxification and tolerance (2002) J Exp Bot, 53, pp. 1-11; Hazra, M., Avishek, K., Pathak, G., Phytoremedial potential of Typha latifolia, Eichornia crassipers and Monochoria hastate found in contaminated water bodies across Ranchi city (India) (2015) Int J Phytorem, 17 (9), pp. 835-840; Keskinkan, O., Goksu, M.Z.L., Basibuyuk, M., Heavy metal adsorption properties of a submerged aquatic plant (Ceratophyllum demersum) (2004) Bioresour Technol, 92, pp. 197-200; Kozlov, M.V., Zvereva, E.L., Industrial barrens: extreme habitats created by non-ferrous metallurgy (2007) Rev Environ Sci Biotechnol, 6, pp. 231-259; Kumar, G.P., Prasad, M.N.V., Cadmium adsorption and accumulation by Ceratophyllum demersum L.: a fresh water macrophyte (2004) Eur J Miner Proces Environ Prot, 4, pp. 95-100; Kurilenko, V.V., Osmolovskaya, N.G., Bioindication role of higher plants in the diagnostics of aquatic ecosystems: case study of small water bodies in St (2007) Petersburg. Water Res, 34 (6), pp. 718-724; Leão, G.A., Oliveira, J.A., Farnese, F.S., Gusman, G.S., Felipe, R.T.A., Sulfur metabolism: different tolerances of two aquatic macrophytes exposed to arsenic (2014) Ecotoxicol Environ Saf, 105, pp. 36-42; Malec, P., Maleva, M.G., Prasad, M.N.V., Strzałka, K., Identification and characterization of Cd-induced peptides in Egeria densa (water weed): putative role in Cd detoxification (2009) Aquat Toxicol, 95, pp. 213-221; Maleva, M.G., Nekrasova, G.F., Malec, P., Prasad, M.N.V., Strzałka, K., Ecophysiological tolerance of Elodea canadensis to nickel exposure (2009) Chemosphere, 77, pp. 393-398; Manny, B.A., Nichols, S.J., Schloesser, D.W., Heavy metals in aquatic macrophytes drifting in a large river (1991) Hydrobiologia, 219, pp. 333-344; Marschner, H., (1995) Mineral Nutrition of Higher Plants, p. 889. , 2nd, London: Academic Press; Maserti, B.E., Ferrillo, V., Avdis, O., Nesti, U., Di Garbo, A., Catsiki, A., Maestrini, P.L., Relationship of non-protein thiol pools and accumulated Cd or Hg in the marine macrophyte Posidonia oceanica (L.) Delile (2005) Aquat Toxicol, 75, pp. 288-292; Mazej, Z., Germ, M., Trace element accumulation and distribution in four aquatic macrophytes (2009) Chemosphere, 74, pp. 642-647; Meharg, A.A., Mechanisms of plant resistance to metal and metalloid ions and potential biotechnological applications (2005) Plant Soil, 274, pp. 163-174; Menone, M.L., Pflugmacher, S., Effects of 3-chlorobiphenyl on photosynthetic oxygen production, glutathione content and detoxication enzymes in the aquatic macrophyte Ceratophyllum demersum (2005) Chemosphere, 60, pp. 79-84; (2015) On state and protection of the Sverdlovsk region environment in 2014, Ekaterinburg, Russia, Government Report [in Russian], , http://www.mprso.ru; Mishra, S., Srivastava, S., Tripathi, R.D., Govindarajan, R., Kuriakose, S.V., Prasad, M.N.V., Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L (2006) Plant Physiol Biochem, 44, pp. 25-37; Mishra, V.K., Tripathi, B.D., Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes (2008) Bioresour Technol, 99, pp. 7091-7097; Mishra, S., Tripathi, R.D., Srivastava, S., Dwivedi, S., Trivedi, P.K., Dhankher, O.P., Khare, A., Thiol metabolism play significant role during cadmium detoxification by Ceratophyllum demersum L (2009) Bioresour Technol, 100, pp. 2155-2161; Nagalakshmi, N., Prasad, M.N.V., Responses of glutathione cycle enzymes and glutathione metabolism to copper stress in Scenedesmus bijugatus (2001) Plant Sci, 160, pp. 291-299; Pawlik-Skowrońska, B., Relationships between acid-soluble thiol peptides and accumulated in the green alga Stichococcus bacillaris (2000) Aquat Toxicol, 50, pp. 221-230; Prado, C., Pagano, E., Prado, F., Rosa, M., Detoxification of Cr(VI) in Salvinia minima is related to seasonal-induced changes of thiols, phenolics and antioxidative enzymes (2012) J Hazard Mater, 239-240, pp. 355-361; Prasad, M.N.V., (2007) Aquatic plants for phytotechnology, pp. 259-274. , Singh S.N., Tripathi R.D., (eds), editors, Environmental Bioremediation Technologies, Springer, New York; Rahman, M.A., Hasegawa, H., Aquatic arsenic: phytoremediation using floating macrophytes (2011) Chemosphere, 83, pp. 633-646; Rai, P.K., Heavy metal pollution in aquatic ecosystems and its phytoremediation using wetland plants: an ecosustainable approach (2008) Int J Phytorem, 10 (2), pp. 133-160; Rauser, W.E., Phytochelatins and related peptides: structure, biosyntesis, and function (1995) Plant Physiol, 109, pp. 1141-1149; Rauser, W.E., Structure and function of metal chelators produced by plants (1999) The case for organic acids, amino acids, phytin, and metallothioneins. Cell Bioch Biophys, 31, pp. 19-48; Rofkar, J.R., Dwyer, D.F., Bobak, D.M., Uptake and toxicity of arsenic, copper, and silicon in Azolla caroliniana and Lemna minor (2014) Int J Phytorem, 16 (2), pp. 155-166; Schutzendubel, A., Polle, A., Plant responses to abiotic stress: heavy metal induced oxidative stress and protection by mycorrhization (2002) J Exp Bot, 53, pp. 1351-1365; Shah, K., Nongkynrih, J.M., Metal hyperaccumulation and bioremediation (2007) Biol Plant, 51 (4), pp. 618-634; Singh, R., Tripathi, R.D., Dwivedi, S., Kumar, A., Trivedi, P.K., Chakrabarty, D., Lead bioaccumulation potential of an aquatic macrophyte Najas indica are related to antioxidant system (2010) Bioresour Technol, 101, pp. 3025-3032; Srivastava, S., Mishra, S., Tripathi, R.D., Dwivedi, G.D.K., Copper-induced oxidative stress and responses of antioxidants and phytochelatins in Hydrilla verticillata (L.f.) Royle (2006) Aquat Toxicol, 80, pp. 405-415; Teisseire, H., Guy, V., Copper-induced changes in antioxidant enzymes activities in fronds of duckweed (Lemna minor) (2000) Plant Sci, 153, pp. 65-72; Török, A., Gulyás, Z., Szalai, G., Kocsy, G., Majdik, C., Phytoremediation capacity of aquatic plants is associated with the degree of phytochelatin polymerization (2015) J Hazard Mater, 299, pp. 371-378; Tripathi, R.D., Singh, R., Tripathi, P., Dwivedi, S., Chauhan, R., Adhikari, B., Trivedi, P.K., Arsenic accumulation and tolerance in rootless macrophyte Najas indica are mediated through antioxidants, amino acids and phytochelatins (2014) Aquat Toxicol, 157, pp. 70-80; Vukolov, J.A., Bases on statistical analysis (2004) Workshop on Statistical Methods and Research of Operations with Use of Statistica and Excel, p. 464. , [In Russian], Moscow: Forum, INFRA-M; Zenk, M.H., Heavy metal detoxification in higher plants—a review (1996) Gene, 179, pp. 21-30; Zhang, X., Uroic, M.K., Xie, W.-Y., Zhu, Y.-G., Chen, B.-D., McGrath, S.P., Feldmann, J., Zhao, F.-J., Phytochelatins play a key role in arsenic accumulation and tolerance in the aquatic macrophyte Wolffia globosa (2012) Environ Pollut, 165, pp. 18-24; Zurayk, R., Sukkariyah, B., Baalbaki, R., Common hydrophytes as bioindicators of nickel, chromium and cadmium pollution (2001) Water, Air Soil Pollut, 127, pp. 373-388
Correspondence Address Prasad, M.N.V.; Department of Plant Physiology and Biochemistry, Faculty of Biology, Institute of Natural Sciences, Ural Federal UniversityRussian Federation; email: prasad.heavymetal@gmail.com
Publisher Taylor and Francis Inc.
CODEN IJPHF
PubMed ID 27167595
Language of Original Document English
Abbreviated Source Title Int. J. Phytorem.
Source Scopus