One modification of the logarithmic barrier function method in linear and convex programming / Popov L.D. // Proceedings of the Steklov Institute of Mathematics. - 2008. - V. 263, l. 2 SUPPL.. - P. S108-S119.

ISSN:
00815438
Type:
Article
Abstract:
A novel modification of the logarithmic barrier function method is introduced for solving problems of linear and convex programming. The modification is based on a parametric shifting of the constraints of the original problem, similarly to what was done in the method of Wierzbicki-Hestenes-Powell multipliers for the usual quadratic penalty function (this method is also known as the method of modified Lagrange functions). The new method is described, its convergence is proved, and results of numerical experiments are given. © 2008 Pleiades Publishing, Ltd.
Author keywords:
Index keywords:
нет данных
DOI:
10.1134/S0081543808060114
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-60949099612&doi=10.1134%2fS0081543808060114&partnerID=40&md5=8d5fc409dc9544bf52bf07572db91b20
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-60949099612&doi=10.1134%2fS0081543808060114&partnerID=40&md5=8d5fc409dc9544bf52bf07572db91b20
Affiliations Institute of Mathematics and Mechanics, Ural Division, Russian Academy of Sciences, ul. S. Kovalevskoi 16, Yekaterinburg, 620219, Russian Federation
References Antipin, A.S., (1979) Nonlinear Programming Methods Based on Primal and Dual Modifications of the Lagrange Function, , Vsesoyuzn. Nauchno-Issled. Inst. Sistemn. Issled. Moscow; Vasil'Ev, F.P., (1988) Numerical Methods for Solving Extremal Problems, , Nauka Moscow; Gol'Shtein, E.G., Tret'Yakov, N.V., (1989) Modified Lagrange Functions. Theory and Optimization Methods, , Nauka Moscow; Evtushenko Yu., G., (1982) Methods for Solving Extremal Problems and Their Application in Optimization Systems, , Nauka Moscow; Eremin, I.I., (2002) Theory of Linear Optimization, , VSP Utrecht; Zhadan, V.G., (2002) Numerical Methods of Linear and Nonlinear Programming. Auxiliary Functions in Constrained Optimization, , Vychislit. Tsentr Ross. Akad. Nauk Moscow; Karmanov, V.G., (1986) Mathematical Programming, , Nauka Fizmatlit; Nesterov Yu., E., (1989) Effective Methods in Nonlinear Programming, , Radio i Svyaz' Moscow; Polyak, B.T., (1983) Introduction to Optimization, , Nauka Moscow; Firsch, K.R., (1955) The Logarithmic Potential Method for Convex Programming, , Univ. Inst. of Economics Oslo; Fiacco, A.V., McCormick, G.P., (1968) Nonlinear Programming: Sequential Unconstrained Minimization Techniques, , Wiley New York; Wierzbicki, A.P., (1971) Arch. Automat. i Telemech., 16, p. 395. , 4; Rockafellar, R.T., (1973) J. Optimization Theory Appl., 12, p. 555. , 5; Fedorov, V.V., (1979) Numerical Maximin Methods, , Nauka Moscow; Gol'Shtein, E.G., (1971) Duality Theory in Mathematical Programming and Its Applications, , Nauka Moscow; Roos, C., Terlaky, T., Vial, J.-Ph., (1997) Theory and Algorithms for Linear Optimization, , Wiley Chichester
Correspondence Address Popov, L. D.; Institute of Mathematics and Mechanics, Ural Division, Russian Academy of Sciences, ul. S. Kovalevskoi 16, Yekaterinburg, 620219, Russian Federation
Language of Original Document English
Abbreviated Source Title Proc. Steklov Inst. Math.
Source Scopus