Thermal stability of Ag, Al, Sn, Pb, and Hg films reinforced by 2D (C, Si) crystals and the formation of interfacial fluid states in them upon heating. MD experiment / Polukhin V.A., Kurbanova E.D. // Russian Metallurgy (Metally). - 2016. - V. 2016, l. 2. - P. 131-143.

ISSN:
00360295
Type:
Article
Abstract:
Molecular dynamics simulation is used to study the thermal stability of the interfacial states of metallic Al, Ag, Sn, Pb, and Hg films (i.e., the structural elements of superconductor composites and conducting electrodes) reinforced by 2D graphene and silicene crystals upon heating up to disordering and to analyze the formation of nonautonomous fluid pseudophases in interfaces. The effect of perforation defects in reinforcing 2D–C and 2D–Si planes with passivated edge covalent bonds on the atomic dynamics is investigated. As compared to Al and Ag, the diffusion coefficients in Pd and Hg films increase monotonically with temperature during thermally activated disordering processes, the interatomic distances decrease, the sizes decrease, drops form, and their density profile grows along the normal. The coagulation of Pb and Hg drops is accompanied by a decrease in the contact angle, the reduction of the interface contact with graphene, and the enhancement of its corrugation (waviness). © 2016, Pleiades Publishing, Ltd.
Author keywords:
Index keywords:
Aluminum; Conductive films; Diffusion in liquids; Drops; Graphene; Interface states; Interfaces (materials); Lead; Molecular dynamics; Palladium; Reinforcement; Thermodynamic stability; Tin; Atomic dy
DOI:
10.1134/S0036029516020117
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84976406327&doi=10.1134%2fS0036029516020117&partnerID=40&md5=afddef27250a5361446e2c91aad2a3d6
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84976406327&doi=10.1134%2fS0036029516020117&partnerID=40&md5=afddef27250a5361446e2c91aad2a3d6
Affiliations Ural Federal University, ul. Mira 19, Yekaterinburg, Russian Federation; Institute of Metallurgy, Ural Branch, Russian Academy of Sciences, ul. Amundsena 101, Yekaterinburg, Russian Federation
References Meng, L., Sun, Q., Wang, J., Ding, F., Molecular dynamics simulation of chemical vapor deposition graphene growth on Ni(111) surface (2012) J. Phys. Chem., 116, pp. 6097-6102; Kara, A., Vizzini, S., Leandri, C., Silicon nano-ribbons on Ag(110): a computational investigation (2010) Journal of Physics: Condensed Matter., 22, p. 045004; Lin, C.-L., Arafune, R., Kawahara, K., Structure of silicone grown on Ag(111) (2012) Applied Physics, 5, p. 045802; Vogt, P., De Padova, P., Quaresima, C., Avila, J., Frantzeskakis, E., Asensio, M.C., Resta, A., Le Lay, G., Silicene: compelling experimental evidence for graphenelike two-dimensional silicon (2012) Phys. Rev. Lett., 108, p. 155501; Davila, M.E., Xian, L., Cahangirov, S., Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicone (2014) New J. Phys., 16, p. 095002; Xu, Y., Yan, B., Zhang, H.-J., Wang, J., Xu, G., Large-gap quantum spin Hall insulators in tin (2013) Phys. Rev. Lettrs. (FilmsPRL), 111 (10), pp. 136804-136809; Hsieh, D., Qian, D., Wray, L., A topological Dirac insulator in quantum spin Hall phase first experimental realization of a 3D topological insulator (2008) Nature, 452, pp. 970-974; Chen, J.Y., Kutana, A., Collier, C.P., Giapis, K.P., Electrowetting in carbon nanotubes (2005) Science, 310, pp. 1480-1487; Vatolin, N.A., Kurbanova, E.D., Mitrofanova, N.S., Guseva, A.B., Galashev, A.E., Polukhin, V.A., Formation of interface and electronic structure during the contact of planar configurations of graphene and silicene on the Ni, Pd, Ag, and Pb surfaces (2015) Physical Chemistry and Technology in Metallurgy. Transactions of the Institute of Metallurgy, pp. 10-38. , Yuzhno-Ural’skoe Knizhnoe Izd., Chelyabinsk; Galashev, A.E., Polukhin, V.A., Removal of a lead film from graphene by xenon-beam bombardment: computer experiment (2015) J. Surface Investigation. X-ray, Synchrotron and Neutron Techniques, 9 (5), pp. 1099-1106; Polukhin, V.A., Vatolin, N.A., Stability and thermal evolution of transition metal and silicon clusters (2015) Rus. Chem. Rev., 84 (5), pp. 498-539; Fleurence, A., Friedlein, R., Ozaki, T., Kawai, H., Wang, Y., Yamada-Takamura, Y., Experimental evidence for epitaxial silicene on diboride thin films (2012) Phys. Rev. Lett., 2, pp. 37-44; Galashev, A.E., Polukhin, V.A., Izmodenov, I.A., Molecular dynamics simulation of the physicochemical properties of silicon nanoparticles containing 73 atoms (2007) Glass. Phys.Chem., 33 (1), pp. 86-95; Galashev, A.E., Polukhin, V.A., Simulation of noncrystalline silicon nanoparticles: a computer experiment (2006) Glass. Phys. Chem., 32, pp. 99-105; Polukhin, V.A., Vatolin, N.A., Carbon from melt up to fullerite (1998) Rasplavy, 3, pp. 3-23; Polukhin, V.A., Kibanova, E.A., Molecular dynamics simulation of amorphization of carbon and thermal destruction of fullerene C60 (1999) Russ. J. Phys. Chem., 73 (3), pp. 421-426; Quhe, R., Yaun, Y., Zheng, J., Does the Dirac cone exist in silicene on metal substrate (2012) Sci. Rep., 6, p. 5476; Gao, J., Zhao, J., Initial geometries, interaction mechanism and high stability of silicene on Ag(111) surface (2012) Sci. Rep., 2, pp. 861-867; Polukhin, V.A., Mitrofanova, N.S., Kurbanova, E.D., Formation of interface during the contact of the planar configurations of graphene, silicene, and germanene on the d metal surfaces (2014) Fiz.-Khem Aspekty Izuch. Klusterov, Nanostruktur Nanomaterialov, 6, pp. 311-321; Polukhin, V.A., Kurbanova, E.D., Galashev, A.E., Classification of functional d-metal/graphene interfaces according to a sorption mechanism and the resistance to thermoactivated disordering and melting. MD simulation (2014) Russian Metallurgy (Metally), 8, pp. 633-646; Polukhin, V.A., Kurbanova, E.D., Dependence of the thermal stability of the interface states of d metals (Cu, Pd, Ti, Ni) and Al with graphene on the character of sorption and diffusion mobility in a contact zone (2015) Rus J. Phys. Chem. A, 89 (3), pp. 531-546; Galashev, A.E., Polukhin, V.A., Computer modeling of the structure and properties of mercury films on graphene (2015) Rus. J. Phys. Chem. A, 89 (8), pp. 1429-1433; Zakharchenko, K.V., Fasolino, A., Los, J.H., Katsnelson, M.I., Melting of graphene: from two to one dimension (2011) J. Phys.: Condens. Matter., 23, pp. 202202-202214; Lamari, F.D., Levesque, D., Hydrogen adsorption on functionalized graphene (2011) Carbon, 49 (15), pp. 5196-5200; Stuart, S.J., Tutein, A.V., Harrison, J.A., A reactive potential for hydrocarbons with intermolecular interactions (2000) J. Chem. Phys., 112, pp. 6472-6486; Mansoory, G.A., (2005) Principles of Nanotechnology, , World Scientific Pub., New York; Munro, L.J., Johnson, J.K., An interatomic potential for mercury (2001) J. Chem. Phys., 114, pp. 5545-5551; Polukhin, V.A., Ukhov, V.F., Dzugutov, M.M., (1981) Computer Simulation of the Dynamics and Structure of Liquid Metals, , Nauka, Moscow; Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., DiNola, A., Haak, J.R., Molecular dynamics with coupling to an external bath (1984) J. Chem. Phys., 81, pp. 3684-3690; Galashev, A.E., Mercury droplet formation on the graphene surface. Computer experiment (2015) Colloid J., 77 (5), pp. 582-591; Bolotin, K.I., Sikes, K.J., Jiang, Z., Ultrahigh electron mobility in suspended graphene (2008) Solid State Commun., 146, pp. 351-355; Davydov, S.Y., Energy of substitution of atoms in the epitaxial graphene–buffer layer–SiC substrate system (2012) Physics of the Solid State, 54 (4), pp. 875-882; Chen, L., Liu, C.C., Feng, B., He, X., Cheng, P., Ding, Z., Meng, S., Wu, K., Evidence for Dirac fermions in a honeycomb lattice based on silicon (2012) Phys. Rev. Lett., 109, p. 056804; Wintterlin, J., Bocquet, M.L., Graphene on metal surface (2009) Surf. Sci., 603, pp. 1841-1852; Watanabe, E., Conwill, A., Tsuya, D., Low contact resistance metals for graphene based devices (2012) Diam. Relat. Mater., 24, pp. 171-174; Liu, W.J., Sun, X.W., Tran, X.A., Vth shift in single layer graphene field effect transistors and its correlation with Raman inspection (2012) IEEE Trans. Dev. Mater. Reliab., 12, pp. 478-481; Liu, W., Wei, J., Sun, X., A study on graphenmetal contact (2013) Crystals, 3, pp. 257-274; Magna, L., Deretzis, I., Theoretical study of the role of metallic contacts in probing transport features of pure and defected graphene nanoribbons (2011) Nanoscale. Res. Lett., 6, pp. 234-240; Wang, F., Zhang, Y., Tian, C., Gate-variable optical transitions in graphene (2008) Science, 320, pp. 206-209; Kwon, S., Kang, M., Effects of Cu intercalation on the graphene/Ni(111) surface: density-functional calculations (2012) J. Korean Phys. Soc., 61, pp. 589-593; Fu, H., Chen, L., Chen, J., Multilayered silicone: the bottom-up approach for a weakly relaxed Si(111) with Dirac surface states (2015) Nanoscale, 7, pp. 15880-15885; Dedkov, Y., Voloshina, E., Fonin, M., Scanning probe microscopy and spectroscopy of graphene on metals (2015) Phys. Status Solidi, 252, pp. 451-468; Ligato, N., Cupolillo, A., Caputi, L.S., Study of the intercalation of graphene on Ni(111) with Cs atoms: towards the quasi-free graphene (2013) Thin Solid Films, 543, pp. 9-62; Generalov, A.V., Voloshina, E.N., Dedkov, Y.S., Structural and electronic properties of graphenebased junctions for spin-filtering: the graphene/Al/ Ni(111) intercalation-like system (2013) Appl. Surf. Sci., 267, pp. 8-11; Voloshina, E.N., Generalov, A.V., Wesser, M., Bottcher, S., Horn, K., Dedkov, Y.S., Structural and electronic properties of the graphene/Al/Ni(111) intercalation system (2011) New J. Phys., 13, p. 113028; Polukhin, V.A., Kurbanova, E.D., Galashev, A.E., Effect of the character of the (Ni, Pd) cluster/ graphene interatomic bonds on the thermosize and structural-isomeric transitions (2012) Russian Metallurgy (Metally), 8, pp. 696-704; Galashev, A.E., Computer stability test for aluminum films heated on a graphene sheet (2014) Technical Physics, 59 (4), pp. 467-473; Galashev, A.E., Mercury droplet formation on a graphene surface. Computer experiment (2015) Colloid Journal, 77 (5), pp. 582-591; Galashev, A.E., Polukhin, V.A., Computer study of the physical properties of a copper film on a heated graphene surface (2013) Physics Solid State, 55 (8), pp. 1733-1738; Polukhin, V.A., Gafner, Y.Y., Kurbanova, E.D., Chepkasov, I.V., Comparative analysis of the thermosize effects of transition-metal clusters that are free or deposited onto graphene. Molecular dynamic simulation (2014) Russian Metallurgy (Metally), 2, pp. 112-125; Polukhin, V.A., Vatolin, N.A., Formation of thermally stable composite materials during the reinforcing of d-M, Bi, Hg, and Pb films with graphene and silicene (2015) Proceedings of the XIV Russian Conference on Structure and Properties of Metallic and Slag Melts, pp. 7-8. , UrO RAN, Yekaterinburg
Correspondence Address Polukhin, V.A.; Ural Federal University, ul. Mira 19, Russian Federation; email: pvalery@nm.ru
Publisher Maik Nauka-Interperiodica Publishing
Language of Original Document English
Abbreviated Source Title Russ. Metall. (Metally)
Source Scopus