Computer simulation of heating of nickel and mercury on graphene / Galashev A.E., Polukhin V.A. // Russian Metallurgy (Metally). - 2016. - V. 2016, l. 2. - P. 124-130.

ISSN:
00360295
Type:
Article
Abstract:
The structural, kinetic, and adhesion properties of nickel and mercury films on two- and one-layer graphene are studied by molecular dynamics simulation upon heating to 3300 and 1100 K, respectively. Two-sided coating of graphene with nickel retards the flow of metal atoms over the surface at T > 1800 K. In the presence of mercury on graphene, Stone–Wales defects and the hydrated edges of the graphene sheet withstand an increase in the temperature up to 800 K. As the temperature increases, the Hg film coagulates into a drop. © 2016, Pleiades Publishing, Ltd.
Author keywords:
Index keywords:
Heating; Mercury (metal); Molecular dynamics; Nickel; Nickel coatings; Sheet metal; Surface defects; Adhesion properties; Graphene sheets; Mercury films; Metal atoms; Molecular dynamics simulations; T
DOI:
10.1134/S003602951602004X
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84976351289&doi=10.1134%2fS003602951602004X&partnerID=40&md5=f04d16dbde3312ede47542474b6f1414
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84976351289&doi=10.1134%2fS003602951602004X&partnerID=40&md5=f04d16dbde3312ede47542474b6f1414
Affiliations Institute of High-Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences, ul. Akademicheskaya 20, Yekaterinburg, Russian Federation; Ural Federal University, ul. Mira 19, Yekaterinburg, Russian Federation; Institute of Metallurgy, Ural Branch, Russian Academy of Sciences, ul. Amundsena 101, Yekaterinburg, Russian Federation
References Galashev, A.E., Polukhin, V.A., Computer study of the physical properties of a copper film on a heated graphene surface (2001) Physics of the Solid State, 55 (8), pp. 1733-1738; Galashev, A.E., Polukhin, V.A., Removal of copper from graphene by bombardment with argon clusters: computer experiment (2014) Physics of Metals and Metallography, 115 (7), pp. 697-704; Galashev, A.E., Computer stability tests for aluminum films heated on a graphene sheet (2014) Tech. Phys., 59 (4), pp. 467-473; Galashev, A.E., Rakhmanova, O.R., Stability of graphene and the materials based on it during mechanical and thermal actions (2014) Usp. Fiz. Nauk, 184 (10), pp. 1045-1065; Polukhin, V.A., Vatolin, N.A., Stability and thermal evolution of transition metal and silicon clusters (2015) Russ. Chem. Rev., 84 (5), pp. 498-539; Li, R., Liu, L., Yang, F., Preparation of polyaniline/ reduced graphene oxide nanocomposite and its application in adsorption of aqueous Hg(II) (2013) Chem. Eng. J., 229, pp. 460-468; Awasthi, A., Bhatt, Y.J., Garg, S.P., Measurement of contact angle in systems involving liquid metals (1996) Meas. Sci. Technol., 7, pp. 753-757; Dujardin, E., Ebbesen, T.W., Hiura, H., Tanigaki, K., Capillarity and wetting of carbon nanotubes (1994) Science, 265, pp. 1850-1851; Chen, J.Y., Kutana, A., Collier, C.P., Giapis, K.P., Electrowetting in carbon nanotubes (2005) Science, 310, pp. 1480-1483; Tersoff, J., New empirical approach for the structure and energy of covalent systems (1988) Phys. Rev. B: Condens. Matter, 37, pp. 6991-7000; Tersoff, J., Modeling solid-state chemistry: interatomic potentials for multicomponent systems (1988) Phys. Rev. B: Condens. Matter, 39, pp. 5566-5568; Stuart, S.J., Tutein, A.V., Harrison, J.A., A reactive potential for hydrocarbons with intermolecular interactions (2000) J. Chem. Phys., 112, pp. 6472-6486; Rafii-Tabar, H., Modeling the nano-scale phenomena in condensed matter physics via computer-based numerical simulations (2000) Physics Reports, 325, pp. 239-310; Moseler, M., Cervantes, F., Hofmann, S., Csanyi, G., Ferrari, A.C., Origin of the quasi-solid state of catalyst nanoparticles in growing nanotubes and nanofibers (2010) ACS Nano, 4, pp. 7587-7595; Epstein, F., Powers, M.D., Liquid metals. I. The viscosity of mercury vapor and the potential function for mercury (1953) J. Phys. Chem., 57, pp. 336-341; Munro, L.J., Johnson, J.K., An interatomic potential for mercury dimer (2001) J. Chem. Phys., 114, pp. 5545-5551; Kutana, A., Giapis, K.P., Atomistic simulations of electrowetting in carbon nanotubes (2006) Nano Lett., 6, pp. 656-661; Schwerdtfeger, P., Wesendrup, R., Moyano, G.E., Sadlej, A.J., Greif, J., Hensel, F., The potential energy curve and dipole polarizability tensor of mercury dimer (2001) J. Chem. Phys., 115, pp. 7401-7412; Lamari, F.D., Levesque, D., Hydrogen adsorption on functionalized graphene (2011) Carbon, 49, pp. 5196-5200; Galashev, A.E., Galashev, A.A., Computer simulation of the cluster bombardment of a lead film on graphene (2015) Khim. Vys. Energ., 49 (2), pp. 135-140; Polukhin, V.A., Kurbanova, E.D., Dependence of the thermal stability of the interface states of d metals (Cu, Pd, Ti, Ni) and Al with graphene on the character of sorption and diffusion mobility in a contact zone (2015) Russ. J. Chem. Phys., 3, pp. 1-18; Polukhin, V.A., Kurbanova, E.D., Galashev, A.E., Comparative analysis of termoscale effects, isomerization and stability of TM-nanoclusters (Pd, Ni, Fe) and Si in dependence on interatomic potentials. MDsimulations (2011) EPJ Web of Conferences, 15, pp. 030021-030025; Rao, R.V.G., Murthy, A.K.K., Mean spherical model and structure factor of liquid mercury and aluminium (1974) Phys. Stat. Sol., 66, pp. 703-707
Correspondence Address Polukhin, V.A.; Ural Federal University, ul. Mira 19, Russian Federation; email: pvalery@nm.ru
Publisher Maik Nauka-Interperiodica Publishing
Language of Original Document English
Abbreviated Source Title Russ. Metall. (Metally)
Source Scopus