References |
Galashev, A.E., Polukhin, V.A., Computer study of the physical properties of a copper film on a heated graphene surface (2001) Physics of the Solid State, 55 (8), pp. 1733-1738; Galashev, A.E., Polukhin, V.A., Removal of copper from graphene by bombardment with argon clusters: computer experiment (2014) Physics of Metals and Metallography, 115 (7), pp. 697-704; Galashev, A.E., Computer stability tests for aluminum films heated on a graphene sheet (2014) Tech. Phys., 59 (4), pp. 467-473; Galashev, A.E., Rakhmanova, O.R., Stability of graphene and the materials based on it during mechanical and thermal actions (2014) Usp. Fiz. Nauk, 184 (10), pp. 1045-1065; Polukhin, V.A., Vatolin, N.A., Stability and thermal evolution of transition metal and silicon clusters (2015) Russ. Chem. Rev., 84 (5), pp. 498-539; Li, R., Liu, L., Yang, F., Preparation of polyaniline/ reduced graphene oxide nanocomposite and its application in adsorption of aqueous Hg(II) (2013) Chem. Eng. J., 229, pp. 460-468; Awasthi, A., Bhatt, Y.J., Garg, S.P., Measurement of contact angle in systems involving liquid metals (1996) Meas. Sci. Technol., 7, pp. 753-757; Dujardin, E., Ebbesen, T.W., Hiura, H., Tanigaki, K., Capillarity and wetting of carbon nanotubes (1994) Science, 265, pp. 1850-1851; Chen, J.Y., Kutana, A., Collier, C.P., Giapis, K.P., Electrowetting in carbon nanotubes (2005) Science, 310, pp. 1480-1483; Tersoff, J., New empirical approach for the structure and energy of covalent systems (1988) Phys. Rev. B: Condens. Matter, 37, pp. 6991-7000; Tersoff, J., Modeling solid-state chemistry: interatomic potentials for multicomponent systems (1988) Phys. Rev. B: Condens. Matter, 39, pp. 5566-5568; Stuart, S.J., Tutein, A.V., Harrison, J.A., A reactive potential for hydrocarbons with intermolecular interactions (2000) J. Chem. Phys., 112, pp. 6472-6486; Rafii-Tabar, H., Modeling the nano-scale phenomena in condensed matter physics via computer-based numerical simulations (2000) Physics Reports, 325, pp. 239-310; Moseler, M., Cervantes, F., Hofmann, S., Csanyi, G., Ferrari, A.C., Origin of the quasi-solid state of catalyst nanoparticles in growing nanotubes and nanofibers (2010) ACS Nano, 4, pp. 7587-7595; Epstein, F., Powers, M.D., Liquid metals. I. The viscosity of mercury vapor and the potential function for mercury (1953) J. Phys. Chem., 57, pp. 336-341; Munro, L.J., Johnson, J.K., An interatomic potential for mercury dimer (2001) J. Chem. Phys., 114, pp. 5545-5551; Kutana, A., Giapis, K.P., Atomistic simulations of electrowetting in carbon nanotubes (2006) Nano Lett., 6, pp. 656-661; Schwerdtfeger, P., Wesendrup, R., Moyano, G.E., Sadlej, A.J., Greif, J., Hensel, F., The potential energy curve and dipole polarizability tensor of mercury dimer (2001) J. Chem. Phys., 115, pp. 7401-7412; Lamari, F.D., Levesque, D., Hydrogen adsorption on functionalized graphene (2011) Carbon, 49, pp. 5196-5200; Galashev, A.E., Galashev, A.A., Computer simulation of the cluster bombardment of a lead film on graphene (2015) Khim. Vys. Energ., 49 (2), pp. 135-140; Polukhin, V.A., Kurbanova, E.D., Dependence of the thermal stability of the interface states of d metals (Cu, Pd, Ti, Ni) and Al with graphene on the character of sorption and diffusion mobility in a contact zone (2015) Russ. J. Chem. Phys., 3, pp. 1-18; Polukhin, V.A., Kurbanova, E.D., Galashev, A.E., Comparative analysis of termoscale effects, isomerization and stability of TM-nanoclusters (Pd, Ni, Fe) and Si in dependence on interatomic potentials. MDsimulations (2011) EPJ Web of Conferences, 15, pp. 030021-030025; Rao, R.V.G., Murthy, A.K.K., Mean spherical model and structure factor of liquid mercury and aluminium (1974) Phys. Stat. Sol., 66, pp. 703-707 |